OpenEngSB Manual

Version 2.5.1

Table of Contents

I 1 gL T [Tox 1 o o PRSPPI 1
1. How to read the ManUalceeeiiiiiie e e e e 2
2. What is the Open ENgineering SErviCe BUSccooiiiiiiiiiiiiie e 3
3. When to use the OPENENGSBccooiiiiiiiiiiiie et 4

3.1. The OpenEngSB as Base ENVIFONMENTcoccuueiiiiiirieeiiiiiee e 4
3.2. Reusing integration Components and Workflowsccccoccviievieeeiiicciiieeeee, 4
3.3. Management ENVIFONMENTooociuiiiiiiie e e e e e e e e e e 4
3.4. Simple Development and Distribution Managementccccccceeeiiiiiiiiiininenninnnnns 4
3.5. Simple Plug-Ins and EXIENSIONScccoiiiiiiiiiiiiie e 4
[1. OPENENGSB FrameWOrKcooiiiiiiiiiiii e e e 5
@ ¥ Tox < - PR 6
4.1. Writing new projects using the OpenENgSBcovvviiiiiiiiiiiiieeee e 6
4.2. Writing Domains for the OpeNENGSBccciviiiiiie e e e 6
4.3. Writing Connectors for the OpenENGSBccevvvieeeiiiieieeeeeeeeeeeeeeeeeeeeee e 6
5. Architecture of the OPeNENGSBcc.euiiiiiiii e 8
5.1. OpenEngSB Enterprise Service BUS (ESB)coocivvieiiiiiiie e 8
5.2. OpenENGSB INfraStrUCIUIEveieiiiiiie et 9
5.3. OpenENgSB COMPONENTScccoeiiieiiiee e 9
5.4. OpenENGSB TOO0l DOMAINSccciiiiiiieee et s s e e e e et e e e e e e e e 9
5.5. Client TOOIS (Service CONSUMET)cceviiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseseeseeeeeeereeeeeeeeees 9
5.6. Domain Tools (Service Provider) ..o 9
5.7. Domain- and Client TOOl CONNECLONSuueiireeeiieiiiiiiereeeeeseeireee e e e e e e 10
6. Semantics iN the OPENENGSBcoiiiiiiiiie e 11
6.1. DOMAIN MOEIS ...t 11
6.2. Load DOMaiN MOEISovviiiiiiiiiee et 11
6.3. Model TransformMationcoooiieiiiiiiii e e eeeeee e 11
7. CONtEXE MANAGEIMENTuieititiiiiieieete bbb sebaee b babsbbbsbsbsbabsssssensnenenees 12
7.1 WITING SEIVICES ...eeiiuiiiiie ettt ettt e et et e e e et e e e e e e e asb e e e e nnnneeeaas 12
8. Persistence in the OPENENGSBcvviiiiiiiiie et 14
8.1, COre PEISISLENCE ..uvveiiee e ettt e e e s e e e e a e e e e e s 14
8.2. Configuration PErSISIENCEuvviiiie i 14
9. Security inthe OPENENQGSBoviiiiiiiii e 16
O I O L= 0 7= =0 < T | 16
9.2, ACCESS CONLIOL .eeeeiiteeee e ettt e e et e e e e e e s e s e e e e e e e s e snnnterneeeaeeeeanne 16
LS G AN U 110 1= o1 (T 1 o o TS 17
1O, WOIKFIOWS ..ottt e e e e e e e e e e e e e s e et e e e e e e e e s s nnnnraaeeeaaens 18
10.1. WOIKFIOW SEIVICE ...vvviiiiiiiie ettt e e e e 18
10.2. RUIEMANAOEL ...ttt e e e e e e e e e e e e e s e st e aa e e e e e e e e sennneees 18
JO.3. PIOCESSESooiiiiieieiie ettt ettt ettt e e 18
T S 4o o SRRSO 19
11.1. COre FUNCLONEIITY ...ooieeeieeeiiieie ettt 19
11.2. UL FUNCHONATY ..ueveiieiiiiiie ettt e e 19
2 (= 1170 (] oo PRSPPI 20
I T 11 (= £ PP 20
12.2. Configure afilterchain ..o, 22

OpenEngSB Manual

12.3. Develop custom filters ..o, 22
12.4. DevelOp an iNCOMING POIToeeiiiiieee it et e e e e s 23
12.5. Develop an OULgOING POITceeiirieeeeiiieeee ettt e st e e 23
13. External Domains and CONNECLOISccccuvriiiiiieeee s cciiieeee e e e e e es e e e e e e e e s ennneraneeaeens 25
G 50 T 1014/ 1 o PSSR 25
14, DEPIOYEN SEIVICESeiiieeie e ettt e e e s et e e e e e e e et e e e e e e e s e e aatbr e e e e e e e e e eentareeeas 26
14.1. ConNECtor CONFIQUIBLIONuuuueuerrurnrurnrnnnenenenenenenennnenenrereenenrrrnrrenrnenenensnnnnnes 26
14.2. ContexXt CONFIQUIBLIONc.vreeeeiiiiee ettt 27
15. Client Projects and Embedding The OpenENgSBccoccviiiiiiiiee e 28
15.1. Using the same dependencies as the OPENENGSBccccccvvvvveeeee e, 28
16. OpenENGSB PlatfOrmMecviii e e e e 29
17. HowTo - Setup OpenEngSB for development (First StEPS) ..o..ccoevvcvvvieeeieeee e, 30
17,00 GO et 30
17.2. TIME t0 COMPIELE ..ot 30
17.3. PrEr@QUISITESeeeiiiiieeeiiiiie ettt e s e e e e e e e s nnbne e e e ane 30
17.4. Java DevelOpmENt Kit 6ocveeiiiiiiiieeiiiiiee et 30
17.5. Getting OPenENQGSBcocceviiieiiee e 30
17.6. Installing OPENENGSBcoooiiiiieiee e 30
17.7. Setup required dOMaINScccvvviiiiiieie e 31
17.8. FITSL SEEPS ...ttt 32
17.9. Shutdown OPENENGSBoooiiiiiee e 32
18. HowTo - First steps with the OpenEngSB (Send mails viathe OpenEngSB) 33
L8.1. GOl ..ottt 33
18.2. TiIME t0 COMPIELEuvviiiieeeee e e e e e e e 33
18.3. PrereqUISITEScoeeeeeeeiieeieeeee e 33
18.4. Creating E-Mail SEIVICESoooiiiiiiiieiee e 33
18.5. Executing Service ACtiONS DIT€CHlYccooriiiiiiiiiiiieeeeec e 34
18.6. Executing Service ACtions Via DOMAINScooiiiiiiieiiiiiie e 35
G T N1 S = o1 36
19. HowTo - Events with the OpenEngSB (Using the logging Service)cocccvveeeeeeinnneee, 37
TO.1. GO .ttt 37
19.2. TiME t0 COMPIELE ...t e er e e e e e e 37
19.3. PreEr@QUISITESceoiiiiiieeiitiie ettt ettt e e e s e e s anbnneeeane 37
19.4. Create reqUIred CONMNECIONSccoiiurrreeiiiiiee ettt e et e e e e e e 37
195, CONFIGUI wvvveiiee e ettt e e e e e e e e e e e e s eernnbraeraeaeeeaaa 37
19.6. CreatiNg @ TUIE ...vveeiiee et e e e e s e et e e e e e e s e naarnees 38
19.7. TRIOW EVENL ...oiiiiiiiie ettt e e st e e e e e e e nnnaeeeeans 39
JO.8. INEXE SEEIDS ...eeeeveeeueueueteieteuetetetetebebebe bttt et te ettt bttt bttt et bbb sbbbnnnenen 40
20. HowTo - Cresate a Client-Project for the OpenEngSB ... 41
1240 5 R T USRI 41
20.2. TIME T0 COMPIELEeeeiiiiiiiie ettt e e e e s b e e e 41
20.3. SteP 1 - NEEUEA T00ISvvviiiiiee it e e 41
20.4. Step 2 - UsiNg the arChetyPe ...eeeee e 41
PO RS (= o TR T I = (= | 42
20.6. SteP 4 - INStaAll TEALUIESveieeeiieee et 42
20.7. Step 5 - Start the ClIeNt-ProjECccooiuiiiiiiiiiee e 43
20.8. SEEP 6 - SNULAOWN ... 43

OpenEngSB Manual

21. HowTo - Interact with the OPENENGSB ReMOtelYccccciiiiiiiiiiiiiieaens 44
21.1. USING IMS PrOXYING ..eveeeeeureeeeaaineeeesasseeeeaasteseesasseeessssnneeessnseseesansneeeesnnneeees 44
21.2. USING WS PIOXING ...veeeeiieieeeaiiiieeeesiieee et e s aiseeae s s e e e s ssneeesannseeesnnseeeenas 48
21.3. Internal SPECIAIITIESeeiiiiiiiiee e 48

22. HowTo - Combine multipl@ CONNECLOIScuvviiiieeeeeececiiieee e e e e e e e e 49
22.1. COMPOSITE SIIALEJIESvvveieeeeee ittt e e e e e e e ccete e e e e e e st e e e e e e s s s eaabrreeeeaeeas 49
22.2. Create a COMPOSITE CONMECLONuuuvuuurururernrnrnrnenenrnrnnnenenennnennnrnenenenrnrnnnnnrnnnnne 49

23. How to define a domain MOdEloooiiiiiiiiiie e 50
P2 50 T o - SRR OPPSRRSPRRRI 50
23.2. TIME 10 COMPIELE ..ot 50
PG T T = (== o [=P RP 50
23.4. Step 1 - Plan the structure of the model ..., 50
23.5. Step 2 - Write the MOdE]uuuuiiiiiiiiiiiiiiirerrereeeenerenerrrrrerennn 50
23.6. Step 3 - Add the model t0 @ dOMAINovveiiiiiieeeiee e 51
23.7. SteP 4 - USe the MOCEl ..o 51

24. HowTo - Integrate services with OpenENgSBc.oovviiiiiiiiiii e 52
4.1, GOl ... e e e e e 52
24.2. TIME 10 COMPIELEeviiiiiiiiee e e e e e e e e s rareeaeee e 52
S B e = (=0 8 1 (- 52
24.4. Setting Up OPENENGSBooviiiiiiiiieiiee et 53
24.5. StEP 1 - SOUICE IEPOSITONY ...cueveeeeeiiieeeeeaiieeee st e e e st e e e st e e e s s e e e e nnnreeeeane 54
24.6. Step 2 - Building the SOUrCE COEvvvviiiiiiiie et 54
24.7. Step 3 - Testing biNaries ... 57
24.8. Step 4 - NOIfICAON PrOCESS ... 59
P I V11 g = (1 oo 61

25. HowTo - Change EDB database back endcooooiiiiiii e 62
25300 TR o - OSSPSR 62
25.2. TIME T0 COMPIELEeeeiiiiiiiie ettt e e e 62
25.3. Use JPA compatible databasecccuvviieeii e 62
25.4. Use non JPA compatible databaseccoccvivieiiee e 63
25.5. Appendix: Use no OSGi compatible databasecccooeeeeeeei e, 63

26. HowTo - Test Remote Messaging using HermeS JMSooiiiiiiiiie e 64
26.1. PreParationcocueeieiiiieieeeeiiie ettt 64
26.2. Send and RECEIVE MESSATESuveieiiiiiieeiiiiiie e sttt e st e et e e 68

[T, ADMINISEration CONSOIEcoiiiiiiie it e e e e s sbaeeeeaaes 70

27. OpenENgSB console COMMANGSceiiiiiiiiiiiiiiie e e 71
27.1. St the CONSOIE ..o e e e e e snnnee s 71
27.2. Available COMMANGSooiiiiiiiiie e 71

IV. AdMinistration USEr INEEITACEeeeiiiiiiiiiiie e e e e e e 72

P2 T I == (o 11 o | PR 73
28.1. Managing global Variallesccceiiiiiiiiii i 73
28.2. Managing iMPOITSuuuiiieieeiiiiiiiiie e e e e e s eetr e e e e e e s e s st e e e e e e s s seanbaraereaeeesaas 73

P22 VT ¢ 1o o PRSP 74
29.1. Wire aglobal variable With @ SErViCeocvvvvvvviiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 74
29.2. What wiring does in the backgroundcccooiiiiiiiii e 75

V. OpenEngSB Contributor Detail INfOrMatioNnscooiiierieiiiiiiie e 76

30. Prepare and use NON-OSGi ATITACESooouvviieiiiiiie e 77

OpenEngSB Manual

30.1. Create Wrapped Artifacts ... 77
30.2. TIPS @NA THICKS ..eeeeeiiiiiie et 78
31. OPENENGSBMOUELSeeieiiiiiie et 79
G I I |V o1 Y (o o PSR SS 79
31.2. Structure of @ MOUE!oeiiiiiiiiie e 79
31.3. Supported fIeld TYPESuvveieeeeee e 79
03 I Y/ oo L= o LSRR 80
32. Engineering Datalase - EDBcooiiiiiiiiiiiiicceee et 81
G 7228 I 1Y/ o 1 V7 (o] o SRR 81
32.2. SITUCLUIE ... 81
G Y2 T o 81
32.4. CONFIICt DELECHIONeieiiiiiieeeiiiiee ettt e s e e s e e e s snreeeean 82
33. Engineering Knowledge Base - EKB ..o 83
1 20 I 1Y/ o 1 V7 (o] o S RET 83
33.2. QUENY INLEITACEeeiieeiieiee e 83
33.3. PerSISt INTEITACE ..vvviieee et e e e e 83
34. How To Create an Internal CONNECIONccoiiiiiieiiiiiie et 84
R = (= 1= o (0TS) (=TSR 84
34.2. Creating a New CONNECLOr PrOJECTceeeeee e 84
34.3. PrOJECE SITUCTUIE ...ooeiiiiie ettt 85
34.4. Integrating the Connector into the OpenEngSB environmentccceeeveneee. 86
35. How To Create an InternNal DOMAaINcvueiiieieiiiiiiiiiee e e s st e e e e e e s sivraeeeeea e e 87
5.1, Prer@QUISITESuviieiiieeee i icciitiee e e et e e e e e s e e e e e e e e s e bee e e e e e e e e e ennnnaees 87
35.2. Creating a new domaiN PrOJECEoccuviiiieiee e ee et e e e e e e e e 87
G TG TR o 00 1= | 89
35.4. CONNECLOIS ... 90
36. HowTo - Extend OpenENgSB CONSOIEoveeiiiiiiieiiiiee e 91
T 1 T - RSO PRSOPPSRRPPRRI 91
36.2. TIME 10 COMPIELEeeiieeieeie e e e e e s errrar e e e e e e 91
R I = (= 1= o (011 (=TSR 91
36.4. St the CONSOIEeeeiiiiiee e e e e 91
36.5. Adding NEW COMMANGSuveiiiiieeeiiiiiiii e e e e e e e e e e e e e neeeeeeas 91
37. HowTo - Create a connector for an already existing domain for the OpenEngSB 93
81 T T - SRR 93
37.2. TIME 10 COMPIELEeeiieiieiie et e e e e e e s aaareeaeeeseas 93
T I = (= 1= o (0151 (=TSR 93
37.4. Step 1 - USethe arChetYPEcuviiiieiiee et 93
37.5. Step 2 - Add the dependenCies ..o 94
37.6. Step 3 - Configure the CONNECIONvviiiiiiiiee et 94
37.7. Step 4 - Implement the CONNECTONoveiiiiiieeiiiii e 95
37.8. Step 5 - Blueprint Setup and Internationalizationccccevviiieeeiiiiieeenne 99
37.9. Step 6 - Start the OpenEngSB with your CONNECLOrcevveeeiiiiiiiiiieeeeeeee, 100
37.10. Step 7 - Test the NEW CONNECLONccoi it 100
38. How to add new field support for domain models..........ccccccvvvviiiiiiii 101
1 1 T - SR 101
38.2. TIME 10 COMPIELEooiiiiiiieeeitee ettt e e 101
38.3. PreEr@QUISITESciiiiiieiie ettt ettt 101

OpenEngSB Manual

38.4. Subtask 1 - Add model SUPPOITcooeeeeeiee e,

38.5. Subtask 2 - Add EDB support

Vi

Part I. Introduction

Thisparts provides general information to the project, the document, changel og and similar datawhich fits neither
in the framework description nor in the contributor section.

The target audience of this part are devel opers, contributors and managers.

Chapter 1. How to read the Manual

Like any open source project we have the problem that writing documentation is a pain and nobody
is paid for doing it. In combination with the rapidly changing OpenEngSB source base this will lead
to a huge mess within shortest time. To avoid this problem we've introduced regular documentation
reviews and, more importantly, the following rules which apply both for writing the document and
for reading it.

e Themanual iswritten as short and precise as possible (Iess text means lesser to read and even lesser
to review)

* The manual does not describe how to use an interface but only coarse grained concepts in the
OpenEngSB. Since the OpenEngSB is not an end user application, but rather a framework for
devel opers we expect that Javadoc is no problem for them. Writing Javadoc and keep it up to date
is still hard for devel opers, but much easier than maintaining an external document. Therefore, all
conceptsare explained and linked directly to the very well documented interfacesin the OpenEngSB
on Github. To fully understand and use them you'll have to read this manual parallel to the interface
documentation in the source code.

Chapter 2. What is the Open Engineering Service

Bus

In engineering environmentsalot of different toolsare used. Most of these operate on the sasmedomain,
but often interoperability isthelimiting factor. For each new project and team member tool integration
has to be repeated again. In general, this ends up with numerous point-to-point connectors between
tools which are neither stable solutions nor flexible ones.

This is where the Open (Software) Engineering Service Bus (OpenEngSB) comes into play. It
simplifiesdesign and implementation of workflowsin an engineering team. The engineering team itsel f
(or aprocess administrator) is able to design workflows between different tools. The entire description
process happens on the layer of generic domains instead of specific tool properties. This provides an
out of the box solution which alows typical engineering teams to optimize their processes and make
their workflows very flexible and easy to change. Also, OpenEngSB simplifies the replacement of
individual tools and allows interdepartmental tool integration.

Project management is set to a new level since its possible to clearly guard al integrated tools and
workflows. This offers new ways in notifying managers at the right moment and furthermore allows
avery general, distanced and objective view on a project.

Although this concept isvery powerful it cannot solve every problem. The OpenEngSB isnot designed
asagenera graphical layer over an Enterprise Service Bus (ESB) which allows you to design ALL of
your processes out of the box. Aslong as you work in the designed domains of the OpenEngSB you
have alot of graphical support and other tools available making your work extremely easy. But when
leaving the common engineering domainsyou al so leave the core scope of the service bus. OpenEngSB
still allows you to connect your own integration projects, use services and react on events, but you have
to keep in mind that you're working outside the OpenEngSB and "falling back" to classical Enterprise
Application Integration (EAI) patterns and tools.

However, this project does not try to reinvent the wheel. OpenEngSB will not replace the tools
already used for your development process, it will integrate them. Our service bus is used to connect
the different tools and design a workflow between them, but not to replace them with yet another
application. For example, software engineers like us love their tools and will fight desperately if you
try to take them away. We like the wheels as they are, but we do not like the way they are put together
at the moment.

Chapter 3. When to use the OpenEngSB

The OpenEngSB project has severa direct purposes which should be explained within this chapter to
make clear in which situations the OpenEngSB can be useful for you.

3.1. The OpenEngSB as Base Environment

OSGi isavery popular integration environment. Instead of delivering one big product the products get
separated into minor parts and deployed within ageneral environment. The problem with this concept
isto get old, well known concepts up and running in the new environment. In addition tools such as
PAX construct allow a better integration into Apache Maven, and extended OSGi runtimes, such as
Karaf allow aricher and easier development. Nevertheless, setting up such a system for development
means alot of hard manual work. Using the OpenEngSB such systems can be setup within minutes.

3.2. Reusing integration Components and Workflows

The OpenEngSB introduces a new level of ESB. Development with all typical ESBs mean to start
from the ground and develop a complete, own environment, only using existing connectors. Using the
OpenEngSB not only connectors but an entire integrated process, workflow and event environment
waits for you. In addition connectors to different tools can not only be adapted to the specific needs,
but also simply replaced by other connectors, using the Domain concept.

3.3. Management Environment

The OpenEngSB delivers a complete management and monitoring environment. While this
environment can be added to your project standalone (similar to e.g. Tomcat management console)
you aso have the possibility to completely integrate the OpenEngSB management environment into
your Apache Wicket application.

3.4. Simple Development and Distribution Management

While typical ESB have to be installed separately from your application the OpenEngSB is delivered
with your application. Develop your application in the OpenEngSB environment and scripts to embed
your application into the OpenEngSB are provided. In addition easy blending allows to adapt the
OpenEngSB visually to your needs and cooperate design.

3.5. Simple Plug-Ins and Extensions

The OpenEngSB provides the infrastructure for a rich Plug-In and extension system. Using maven
archetypes Plug-1ns can be created, uploaded and provided to al other OpenEngSB installations or
applications using the OpenEngSB.

Part II. OpenEngSB Framework

This part gives an introduction into the OpenEngSB project and explains its base usage environment and the
concepts, such as Domains, Connectors, Workflows and similar important ideas. Furthermore this part covers
installation, configuration and usage of the administration interface to implement a tool environment according
to your needs.

The target audience of this part are devel opers and contributors.

Chapter 4. Quickstart

As adeveloper you have basically two ways in which you can use the OpenEngSB. One option isto
use the OpenEngSB as a runtime environment for any project. In addition you've the possibility to
write Plug-1ns (Domains, Connectors, ...) for the OpenEngSB. Both cases are explained in this chapter.

4.1. Writing new projects using the OpenEngSB

TBW(Jira-l SSUE)

4.2. Writing Domains for the OpenEngSB

To create a new Domain run mvn openengsh:genDomain (or use . ./ et c/ scri pt s/ gen- domai n. sh)
in the domai n folder. Y ou will be asked for the name of your domain. Enter the domain name starting
with alower case letter. For the other questions valid defaults are given.

The new domain project will be added as a submodule. You eventually want to run mvn
openengsb: eclipse and import the new project in eclipse.

Add the methods your domain supplies to the domain interface. If your domain raises any events add
methods like

voi d rai seEvent (Your Event event);

(your event class subtype of Event as single parameter) to the events interface.

4.3. Writing Connectors for the OpenEngSB

To create a new Connector run mvn openengsb:genConnector (or use ../etc/scripts/gen-
connect or . sh) in the connect or folder. You will be asked for the name of the domain you want to
implement. Enter the domain name starting with alower case letter. Y ou may adapt the name of the
implemented domain interface if you it does not match the naming convention. Supply the name of
the connector staring with alower case |etter.

The new domain project will be added as a submodule. You eventually want to run mvn
openengsb: eclipse and import the new project in eclipse.

Implement the domain interface in the supplied class (unfortunately no method stubs are generated).

Unimplemented domain methods should always throw an exception rather than return
default value or do nothing. Therefore each domain method without body must throw
DomainM ethodNotl mplementedException to indicate that requested domain functionality is not
implemented.

@verride
public void foo() {
t hrow new Domai nMet hodNot | npl enment edExcepti on();

}

http://issues.openengsb.org/jira/browse/OPENENGSB-2508

Quickstart

The ServiceFactory has to supply a ServiceDescriptor that contains all attributes needed to instantiate
the Connector. In the methods createServicel nstance and updateServicel nstance use the provided
attributes to create a new new instance or update your Connector. The methods updateValidation
and createValidation should do the same but try to validate the provided attributes first and return a
validation result.

The generated ServiceManager usually does not have to be changed.

Chapter 5. Architecture of the OpenEngSB

This chapter tries to give a short summary of the most important concepts in the OpenEngSB
architecture.

The following graphic shows the architecture of the OpenEngSB. In the center we use a bus system
to integrate different modules. In this case we do not use a classical Enterprise Service Bus (ESB),
but rather the OSGi service infrastructure via Apache Aries Blueprint-DM (Section 5.1, “ OpenEngSB
Enterprise Service Bus (ESB)”). We are using Apache Karaf as the OSGi environment. Karaf is
used in this case, instead of a most basic OSGi environment, such as Apache Felix or Eclipse
Equinox , because it supports us with additional features as extended console support and the feature
definitions. This base infrastructure, including all modifications required for the OpenEngSB is
called the Section 5.2, “OpenEngSB Infrastructure”. Within the OpenEngSB Infrastructure so called
Section 5.3, “OpenEngSB Components’ and Section 5.4, “OpenEngSB Tool Domains’ are installed.
Both types are written in a VM compatible language, including OSGi configuration files to run in
the OpenEngSB Infrastructure. They are explained later within this chapter. Different tools running
outside the OpenEngSB Infrastructure are called Section 5.5, “Client Tools (Service Consumer)” or
Section 5.6, “Domain Taools (Service Provider)”, depending on their usage scenario. To integrate and
use them within the OpenEngSB so called Section 5.7, “Domain- and Client Tool Connectors’ are
used. All of these concepts are explained within the next sections.

' . 7 E N
Engineering Service Bus
(OpenEngSB)
Domain Tool Client Tool
i i ESB i

Domain Tools Connectors Tool Domains Core Components Connectors Client Tools
Team Communication

Tool A C Client Toal A

Team Communication
Tool Domain

Team Communication c

Tool B C Client Tool B
Electrical Engineering

Tool A Registry
Electrical Engineering Electrical Engineering

Tool B Tool Domain

Workflow
[erdee

Electrical Engineering -

Tool C

OpenEngSB Infrastructure
[J

Technical view of the OpenEngSB highlighting the
most important concepts of the integration system

5.1. OpenEngSB Enterprise Service Bus (ESB)

One of the principa concepts for the OpenEngSB development is (if possible) to use already existing
and proven solutions rather than inventing new ones. In this manner the OpenEngSB is an extension
to the ESB concept. Typical ESBs such as Apache Servicemix or other JBI or ESB implementations
always have the feeling to be huge and bloated. Complex integration patterns, messaging, huge

http://karaf.apache.org
http://felix.apache.org
http://www.eclipse.org
http://www.eclipse.org
http://servicemix.apache.org

Architecture of the OpenEngSB

configuration files and similar concepts/problems lead to this feeling. And those feelings are right.
They are bloated. The OpenEngsB tries a different approach. Using Karaf as its base framework the
environment is VERY lightweight. Depending on your use case you can use different configurations
and packages out of the box.

5.2. OpenEngSB Infrastructure

While Apache Karaf provides a rich environment and functionality we're not done with it. Via the
Apache Aries Blueprint-DM extension mechanism, AOP and the OSGi listener model the OpenEngSB
directly extends the environment to provide own commands for the console, fine grained security and
afull grown workflow model. These extensions are optional and not required if you want to use the
platform alone. Add or remove them as required for your use case.

5.3. OpenEngSB Components

These libraries are the OpenEngSB core. The core is responsible to provide the OpenEngSB
infrastructure as well as general services such as persistence, security and workflows. To provide best
integration most of these components aretied to the OpenEngSB ESB environment. Neverthel ess, feel
free to add or remove them as required for your use case.

5.4. OpenEngSB Tool Domains

Although each tool provider gives a personal touch to its product their design is driven by a specific
purpose. For example, therearemany different issuetrackersavailable, each having itsown advantages
and disadvantages, but all of them can create issues, assign and delete them. Tool Domains are based
on this idea and distill the common functionality for such a group of tools into one Tool Domain
interface (and component). Tool domains could be compared best to the concept of abstract classes
in in object orientated programming languages. Similar to these, they can contain code, workflows,
additional logic and data, but they are useless without a concrete implementation. Together with the
ESB, the OpenEngSB infrastructure and the core components the tool domains finally result in the
OpenEngSB.

5.5. Client Tools (Service Consumer)

Client Tools in the OpenEngSB concept are tools which do not provide any services, but consume
services provided by Tool Domains and Core Componentsinstead. A classical example from software
engineering for a client tool is the Integrated Development Environment (IDE). Developer prefer to
have the entire devel opment environment, reaching from the tickets for a project to its build results, at
hand. On the other hand they do not need to provide any services.

5.6. Domain Tools (Service Provider)

Domain Tools (Service Provider) Domain Tools, compared to Client Tools, denote the other extreme
of only providing services. Classically, single purpose server tools, like issue tracker or chat server,
match the category of Domain Tools best. Most tools in (software+) engineering environments fit of
coursein both categories, but since there are significant technically differences between them they are
described as two different component types.

Architecture of the OpenEngSB

5.7. Domain- and Client Tool Connectors

Tool Connectors connect tools to the OpenEngSB environment. They implement the respective Tool
Domain interface. As Client Tool Connectors they provide a Client Tool with an access to the
OpenEngSB services. Again, Domain- and Client Tool Connectors are mostly mixed up but separated
because of their technical differences. Additionally it is worth mentioning that tools can be integrated
with more than one connector. Thisallows onetool to act in many different domains. Apache Mavenis
an example for such multi-purpose tools, relevant for build, aswell astest and deploy of Java projects.

10

Chapter 6. Semantics in the OpenEngSB

One of the core concepts of the OpenEngSB isthe correct handling of domain models, versionize them
and perform model transformations on such models so that they can be easily used by tools which
connect to the OpenEngSB.

6.1. Domain Models

A domain model represents an abstraction of data a domain has to work with (e.g. Issue for issue
tracking systems). It capsulates all information which is needed for one information unit. Such domain
models are defined in the domains and can be used by connectors which use the domain.

This domain models can be saved and versionized with the help of the OpenEngSB and two core
components, namely the EDB(Engineering Database) and the EKB(Engineering Knowledge base).
Those two components will be explained in more detail in the contributor manual.

A domain model is represented as an interface. Thisinterface hasto extend aprovided interface which
is caled "OpenEngSBModel". To work with this interface, we provide a Utils class, (ModelUtils)
which isableto proxy the interface and gives you the feeling like you work with anormal class object.
Such domain models can be sent viaevents(EDBI nsertEvent, EDBUpdateEvent, EDBDel eteEvent and
EDBBatchEvent) to the EDB, where they will be saved, updated or deleted. This events can be thrown
from every connector that extends "AbstractOpenEngSBConnectorService', which shall be done by
all connector implementations.

An OpenEngSBModel consists only of getter and setter pairs. Those methods describe which
fields the model have. Field types which are supported until how are: simple types, Strings, Date,
OpenEngSBModel, Lists and Files. Files are a special case, but it is possible to send models with File
objects remotely and the File which is represented by the File object will be available at the remote
machine as alocal copy there.

Every OpenEngSBMoaodel can define an id for itself. Thisid can be used for easier finding of domain
models and to enable the versioning possibility when they are saved in the EDB. Such anid can easily
be defined by setting a special annotation over the setter which defines the id for the object. This
annotation is called "OpenEngSBModel 1d".

6.2. Load Domain Models

Domain models can be loaded from the EDB through the EKB. The EKB bundle provides a service
called Queryinterface. This service provides all needed functionality to search and load models from
the EDB. It also convert the elementsfrom the EDB to anew instance of the domain model you request.

6.3. Model Transformation

Thisfeatureis not yet implemented. Thereis currently research going on how to accomplish this task
the best way.

11

Chapter 7. Context Management

The context isone of the most important core concepts of the OpenEngSB. It allowsto reuse predefined
workflows in several contexts. A context may often represent a project or subproject. So it is possible
to execute the same workflow with the project-specific tool-instances and other metadata (like contact-
information).

To determine in which context an action should be executed a thread-local variable is used. The
ContextHolder keeps track of this variable (the current threads' context). Invoking the set- and get-
method will always manipulate the context of the current Thread. When a new Thread is spawned it
inherits the context from the parent thread.

Attention: When using Theadpools, the ContextHolder may malfunction (i.e. return the context of
some previous task that was run in the same thread). Use

ThreadLocal Uti | . cont ext Awar eExecut or (Execut or Ser vi ce)

to convert any executor to a context-aware one. ExecutorServices returned by this method ensure that
the submitted tasks are executed in the same context as the thread they were submitted from.

Thisway connector-implementations and other client projects always can handle actions according to
the current context, and execute actions in specific a specific context. So when a person with a certain
role in the project (e.g. project manager) needs to be notified of some event, the value of his contact-
address is specific to the context of the project(s) he is managing.

7.1. Wiring services

The context is also used to handle the wiring of servicesin workflows. Suppose there are two projects
that use their own SCM-repositories and for both repositories connector-instances were created to poll
them. When executing a workflow contains an action that polls the SCM, the correct service ca be
picked by looking up the current thread's context.

In general workflows have references to several domains and other services which they interact with
during execution. Each project might have their own tools behind these domains, so these references
must be resolved at runtime depending on the current context.

For thisto work the workflow-engine declares global variablesthat are used in rules and processes. A
variableisresolved by looking up the service with the same name in the current context. If no service
with that name is available in the context it islooked up in the "root"-context.

In detail the wiring is handled via the service-properties. Services contain properties where the key
is of the format "location.<contextid>". The value is a list of "locations" represented by an array of
strings. So a service may have several locationsin several contexts.

When a global variable is accessed during the execution of an action (from a process or rule), the
OSGi-context is queried for the corresponding service. The service wired to this variable must have
location with the same name as the variable. The service is searched in the current context and the
root-context. If no serviceisfound, the action is stalled for 30 seconds. If thereis still no service found
an Exception isthrown. Internally thisis handled using proxies. When the workflow serviceis started,

12

${github}/core/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java

Context Management

all globals are populated with proxies, that automatically resolve the service with the corresponding
location when a method is invoked.

Example: The auditing-service is registered with the interface AuditingDomain. The service has
property "location.root" with value {"auditing"} (array with one element). The workflow engine
contains agloba named "auditing” and arule that invokes a method on every Event that is processed.
When the rule fires and the consegquence is executed, the proxy representing "auditing”-global
queries for a service with the location.currentContext or the location.root containing a location-entry
"auditing”. Since root-services get a service-ranking of "-1" by default, the service current context's
would supersede the service located in the root-context.

13

Chapter 8. Persistence in the OpenEngSB

The OpenEngSB contains various different persistence solutions which should be introduced and
explained in this chapter

8.1. Core Persistence

The OpenEngSB has a central persistence service, which can be used by any component within in
the OpenEngSB to store data. The service is designed for flexibility and usability for the storage of
relatively small amounts of data with no explicit performance requirements. If special persistence
features need to be used it is recommended to use a specialized storage rather than the general storage
mechanism.

The persistence service can store any Java Object, but was specifically designed for Java Beans. With
the following additional conditions: First of all the bean to persist needs to be serializable. In addition
the equals method needs to be overwritten. If afield on the Ihs of the comparision is null every field
on therhsis accepted; otherwise the fields are compared dirctly.

The interface of the persistence service supports basic CRUD (create, update, retrieve, delete)
mechanisms. Instances of the persistence service are created per bundle and have to make surethat data
isstored persistently. If bundles need to share datathe common persistence service cannot be used, asit
doesnot support thisfeature. The persistence manager isresponsible for the management of persistence
service instances per bundle. On the first request from a bundle the persistence manager creates a
persistence service. All later requests from a specific bundle should get the exact same instance of the
persistence service.

Queries with the OpenEngSB persistence done viathe persistence service. Behind this service an easy
query-by-example logic is used to retrieve your results. Since the current persistence implementation
of the OpenEngSB builds on serialisation it can happen that some additional actions are required to
restore the object. In that case make use of the Specia ActionsAfterSerialisation interface. If your
entities implement the interface the "doSpecial Actions' method is called after restoring alowing you
to do additional actions to the bean before it's returned to the caller.

The persistence solution of the OpenEngSB was designed to support different possible back-end
database systems. So if a project has high performance or security requirements, which can not be
fulfilled with the default database system used by the persistence service, it is possible to implement
adifferent persistence back-end. To make this exchange easier atest for the expected behavior of the
persistence service is provided.

8.2. Configuration Persistence

Besides the centralized Java Bean store the OpenEngSB also have a more specialized solution to
store configurations. Configurations are basically also Java Beans, but have to extend a Configltem.
Well, since Configurations are also only Java Beans you may ask: Why not simply store them viathe
persistence service? The reason is quite simple. We do need to store configurations at various places.
Options may be the file system, an object store or any other place. In addition configurations, when
you e.g. store them to files, have to be quite specific about their types. Rule, for example, have to be
stored as simple strings, flows as xml files and connectors as key-value-pairs. Being so specific the

14

${github}/core/api/src/main/java/org/openengsb/core/api/persistence/PersistenceService.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/PersistenceManager.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/PersistenceService.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/SpecialActionsAfterSerialisation.java
${github}/core/persistence/src/test/java/org/openengsb/core/persistence/PersistenceServiceTest.java
${github}/core/api/src/main/java/org/openengsb/core/api/model/ConfigItem.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/PersistenceService.java

Persistence in the OpenEngSB

implementations of the backends also have to be specific. Besides, there are kind of regions. Examples
are Rules, Flows, and various others. Basically in you code you simply want to ask for a configuration
persister for rules and do not care if it is afile persister or something else. In addition rules could be
persisted somewhere else than e.g. flows. Therefore those backends have to be configured separate
for each type.

Ok, after the need is identified let's take a look at the how. Basicaly it's quite simple. You
register various backend services in the OSGi registry, give them a specific ID, configure how
a region is mapped to an idea and request a persister for a specific region or type and retrieve
the correct implementation. From a user point of view this system is quite simple. Use the
getConfigPersi stenceService(String type) method from the OpenEngSBCoreServices class with the
type, which istypically stored directly at the configurations, asfor example for the RuleConfiguration
and retrieve and persist RuleConfigurations. The mapping between the backend and the frontend is
defined in the configuration file here. If you want to use another available and compatible backend
for rule configurations add the backend id in the configuration file and the service for this region will
switch automatically.

Although it is quite simple to configure, change and consume and provide configurations it is mostly
not a good idea to ssimply change the properties, backend or frontend if you're not exactly sure about
what you're doing. You can easily take the wrong backend service which will not be able to persist
e.g. a RuleConfiguration and throws exceptions. If you swtich the backend during the run everything
stored in the old backend would not be available in the new one. Within a client project mostly relay
on using those services to read the properties and use the OpenEngSB to store them.

Still the system can easily be extended to your own use. Typically you haveto do the following stepsto
provide anew configuration service. First of all start by providing an own Configuration which extends
Configltem. Please only use the metadata and content fields and do not add additional variables.
They wont get stored. Now add a configuration file into etc with org.openengsb.persistence.config-
ANY_NAME_YOU_LIKE.cfg. Inthisfile define the region and the backend id. The exact values and
detailed explanation for thosefieldsisavailable here. If you've not choosen one of the general available
servicesfor storage you now can implement your own backend service registered in the OSGi registry
with the ID you've configured in the .cfg file before. Theinterface you have to implement and register
as a service is the ConfigPersistenceBackendService.

8.2.1. Context configuration persistence

The context configuration persistence follows the basic configuration persistence scheme. In this case
the backend (ContextFilePersistenceService) creates files for each context (basically empty fileswith
filename <contextl d>.context), the context service (ContexServicelmpl) requests a config persistence
service of type CONTEXT, is given the aforementioned one and uses it to persist its data.

15

${github}/core/common/src/main/java/org/openengsb/core/common/OpenEngSBCoreServices.java
${github}/core/api/src/main/java/org/openengsb/core/api/model/RuleConfiguration.java
${github}/assembly/src/main/filtered-resources/etc/org.openengsb.persistence.config-rule.cfg
${github}/core/api/src/main/java/org/openengsb/core/api/model/ConfigItem.java
${github}/core/api/src/main/java/org/openengsb/core/api/Constants.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/ConfigPersistenceBackendService.java
${github}/core/services/src/main/java/org/openengsb/core/services/internal/ContextFilePersistenceService.java
${github}/core/services/src/main/java/org/openengsb/core/services/internal/ContextServiceImpl.java

Chapter 9. Security in the OpenEngSB

9.1. Usermanagement

The OpenEngSB has a central user management service, which can be used for example by an user
interface. The serviceis designed to manage your users. Y ou can create new user and save them to the
persistence or retrieve, update and del ete them.

The user management needs a back-end database, e.g. the central persistence service of the
OpenEngSB.

Theinterface of the User manager supports basic CRUD mechanisms (create, retrieve, update, delete).
The User is the used user model. It holds attributes like a password, username, if the user is enabled,
or hisaccount is expired or locked. A user isidentified by his username. So the username can not be
changed. Another attribute are the authorities. These are the roles granted to the user. These can be
for example "ROLE_ADMIN" which defines the user as admin. Depending on the roles, a user can
have different rights. For the OpenEngSB-Ul auser hasto have at least therole"ROLE_USER" which
isthe default role.

9.2. Access control

Access control isdone on the service level. Core-services and connector-instances are all published as
OSGi-services. Other services and components always reference these service instances. We use the
approach of AOP to achieve security of these services. The openengsh.core.security-bundle publishes
aservice that serves as a method-interceptor. When it is attached to a service every method call on the
serviceis preceded with an authorization-check.

A reference to the method-interceptor can be obtained by this line in the spring-context.xml

<osgi: reference id="securitylnterceptor" interfacez"org.aopalIiance.intercept.N@thodlnterc%ptor" />

In order to attach it to an existing bean, one hasto create a ProxyFactoryBean:

<bean i d="secureServi ceManager" cl ass="org. spri ngfranmework. aop. f r amewor k. Pr oxyFact or yBean" >
<property name="proxylnterfaces">
<val ue>ot her. Servi cel nt erf ace</ val ue>
</ property>
<property name="inter cept or Names" >
<list>
<val ue>securityl nt erceptor</val ue>
</list>
</ property>
<property nanme="target" ref="<real Bean>" />
</ bean>

When registering a service in code rather than in a spring context.xml this can be done as seen in the
AbstractServiceM anager

i mport org.springframework. aop. f ramewor k. ProxyFact ory;
11

...

Il

16

${github}/core/api/src/main/java/org/openengsb/core/api/security/UserManager.java
${github}/core/api/src/main/java/org/openengsb/core/api/security/model/User.java
${github}/core/common/src/main/java/org/openengsb/core/common/AbstractServiceManager.java

Security in the OpenEngSB

ProxyFactory factory = new ProxyFactory(serviceOject);
factory. addAdvi ce(securitylnterceptor);
OpenEngSBSer vi ce securedServi ce = (OpenEngSBServi ce) factory. getProxy();

The decision about the allowing the user access to a service as made by looking at the services
instanceld. Therefore, all services that are to be placed under this access control, must implement
OpenEngSBservice, and make sure the instancel d is unique enough to ensure security. Y ou may want
to derive your service-class from AbstractOpenEngSBService.

The persistence of the security-bundle manages a set of GrantedA uthorities (Roles) for each instancel d.
There is one exception: Users with "ROLE_ADMIN" are always granted access.

9.3. Authentication

This chapter describes how to deal with security in internal bundles and client projects

For authentication the OpenEngSB provides an AuthenticationProvider as a service. It's obtainable
via blueprint.

<reference interface="org.springframework. security.authentication. Authenticati onManager" />

This service is able to authenticate users
(org.springframework.security.authenti cation.UsernamePasswordA uthenticationToken) and bundles
(org.openengsb.core.security.BundleAuthenticationToken). The use of the former is pretty obvious.
The latter is used for authentication for internal actions, that require elevated privilages. This
authentication should be used with caution, and never be exposed externally for security reasons.

17

${github}/core/api/src/main/java/org/openengsb/core/api/OpenEngSBService.java
${github}/core/common/src/main/java/org/openengsb/core/common/AbstractOpenEngSBService.java

Chapter 10. Workflows

The OpenEngSB supportsthe modeling of workflows. This could be done by two different approaches.
First of al arule-based event approach, by defining actions based on events (and their content) which
were thrown in or to the bus. Events are practical for "short-time handling" since they are also easy
to replace and extend. For long running business processes the secondary workflow method could be
used which is based on Section 10.3, “Processes’ described in Drools-Flow.

The workflow service takes "events' as input and handles them using a rulebased system (JBoss
Drools). It provides methods to manage the rules.

The workflow component consists of two main parts: The RuleManager and the WorkflowService.

10.1. Workflow service

The workflow service is responsible for processing events, and makes sure the rulebase is connected
to the environment (domains and connectors). When an event is fired, the workflow-service spawns a
new session of the rulebase. The session gets popul ated with references to domain-services and other
hel per-objects in form of globa variables. A drools-session is running in a sandbox. This means that
the supplied globals are the only way of triggering actions outside the rule-session.

10.2. Rulemanager

The rule manager provides methods for modifying the rulebase. As opposed to plain drl-files, the
rulemanager organized the elements of the rulebase in its own manner. Rules, Functions and flows are
saved separately. All elements share a common collection of import- and global-declarations. These
parts are sticked together by the rulemanager, to a consistent rulebase. So when adding a new rule or
function to the rulebase, make sure that all imports are present before. Otherwise the adding of the
elements will fail.

10.3. Processes

In addition to processing Events in global/context-specific rules, it is also possible to use them to
control a predefined workflow. The WorkflowService provides methods for starting and controlling
workflow-processes.

When the workflow service receives an event, it is inserted into the rulebase as a new fact (and rules
arefired accordingly). In addition the event is"signaled" to every active workflow-process. Workflow
logic may use specific rulesto filter these events.

18

${github}/core/api/src/main/java/org/openengsb/core/api/workflow/WorkflowService.java
${github}/core/api/src/main/java/org/openengsb/core/api/workflow/RuleManager.java

Chapter 11. Taskbox

The Taskbox enables you to combine workflows with Human Interactions.

11.1. Core Functionality

All workflows started in the OpenEngSB are supplied with the global variable ProcessBag. Inside the
workflow you can populate the ProcessBag with your data. As soon as Human Interaction is needed
you haveto incorporate the sub-workflow "humantask”, which wraps the ProcessBag into a Task. Y ou
can then query the Taskbox service for open Tasks, and manipulate the data inside of the Task (Not
necessarily by Human Interaction). When you are finished, you again call the Taskbox service and
supply the changed Task. The changed data gets extracted and is handed back over to the workflow.

11.2. Ul Functionality

The Webtaskbox service providesadditional Ul Features, if you want to integrate the Taskbox-Concept
into a wicket Page. Y ou can query the Webtaskbox service for an Overview Panel that displays all
open Tasks. If the default Overview Panel doesn't fit your needs exactly you can develop your own
Ul-Component using the (Core-) Taskboxservice. If you navigate onto a specific Task the Overview
Panel displays a (default) Detail Panel populated with the values of the Task, if there is no custom
Panel registered for the supplied tasktype. Y ou can develop your own Detail-Panels and register them
for a specific Tasktype via the Webtaskbox service.

19

${github}/core/api/src/main/java/org/openengsb/core/api/workflow/model/ProcessBag.java
${github}/core/api/src/main/java/org/openengsb/core/api/workflow/model/Task.java
${github}/core/api/src/main/java/org/openengsb/core/api/workflow/TaskboxService.java
${github}/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/WebTaskboxService.java
${github}/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/web/TaskOverviewPanel.java
${github}/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/web/TaskPanel.java

Chapter 12. Remoting

The OpenEngSB provides interfaces for interacting with other applications on the network in a
generic way that all owsusing any programming language, transport protocol and message marshalling/
encoding. This does not mean that it magically supports all protocols and encodings, but rather that
it provides a generic API that provides means for integration of new protocols etc. All external
communication is based on single messages, which meansthe whole mechanismis statelessonitsown.
To realize stateful computations, either the filter(s) or the service must provide such functionality.

12.1. Filters

Following the "Chain of Responsibility"-Pattern [http://en.wikipedia.org/wiki/Chain-of-
responsibility pattern] the OpenEngSB uses Filters to modularize the processing and transport of
incoming and outgoing messages (see Figure 12.1, “How filters fit in the architecture”). A filter is
responsible for one (or more) specific transformation steps. Ideally a Filter should only represent a
specific transformation step to increase reuseability.

)

Plain text
o] MethodCall
Remote Client Network |ncgrrr1:ng
T----_ ° Filterchain RequestHandler
\ ethodR
Plain text esult

Figure 12.1. How filtersfit in the architecture

A filter is responsible for both ways of atransformation (for example afilter that parses arequest is
also responsible for marshalling the result). Since it is a chain of filters, every filter has a successor
(next) where it passes it's transformed request. After the next filter is done and returns a result the
current filter transforms the message to the desired output format. This gives filterchains a pyramid-
like architecture (see Figure 12.2, “Pyramid-like architecture of filters”)

20

http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern

Remoting

MethodCall
JSON- Request
String \

MethodCall
Incoming
Port Method. MethoIER RequestHandler

Result- esu

JSON: Message
String
RequestHandler
Filter

MarshalFilter

Figure 12.2. Pyramid-like ar chitecture of filters

Example: Typically an incoming remote call can be divided into the following steps:
* receive: Reads the message in raw form a network stream.

» unmarshal request: transform the raw stream into a MethodCall object

» handle the request: resolve the corresponding osgi-service, invoke the method and wrap the result
in aMethodResult object

« marshal result: marshal the result for transporting it over the network
¢ send result; send the result back to the caller over the network

A port realizing such a transport would consist of a task listening for incoming messages and
a chain with two Filters: One for marshalling and one handling the request itself. An example
for such an implementation is the "jms-json-basic"-port in the "openengsb-ports-jms"’ project. The
incoming port is represented by a single that listens on a specific jms-queue for new requests. If a
Text-message is received it is passed on to the filterchain as a string. The filterchain starts with a
"JsonMethodCallMarsha Filter". As the name indicates, this filter expects a string containing a json-
encoded MethodCall. The string is transformed into a MethodCallRequest object and passed on to the
next filter. The next filter isthe RequestHandlerFilter. It extracts the MethodCall from the request and
passesit on to the RequestHandl er and wrapsthe returned M ethodResult into aM ethodResultM essage.
The MethodResultMessage is then returned to the "JsonMethodCallMarshaFilter”. There the
MethodResultM essage is encoded in JSON and returned to the MessageHandler which then sends
it to the answer-queue. In the IMS-Port the result is sent to a queue named after the "callld"
submitted in the Request. The callld however cannot necessarily be extracted from the plain-text
message at the beginning of the chain. Therefore a map containing values obtained in the filter chain
(propertyContainer) is passed in to each filter during processing.

21

Remoting

Thisis only a specific example of creating a port. Another port behaving similarly but using xml as
encoding can easily be configured. It can use the same bean but with a different filterchain. In the
filterchainthefirst element isreplaced by an XML MethodCallMarshal Filter. the RequestHandl erFilter
isthe same asin the jms-json-port.

12.2. Configure a filterchain

An instance of FilterChainElement may only be part of one FilterChain. In order to reuse
FilterChainElementsin other filterchains new instances must be created. Thisis because the instances
of the filters may contain references to the next element in the chain.

That's why Filterchains are supposed to be configured using a FilterChainFactory. A filterchain isa
bean configured with alist of filters. Each element may either be the Classname of aFilterAction-class
(which must have a public default constructor) or an instance of a FilterChainElementFactory. The
last element in the list may also be an instance of a FilterAction (or other FilterChain). The following
example shows how to configure a port via blueprint.

<bean i d="incom ngFi | t er Chai nFactory" cl ass="org. openengsbh. core. conmon. renot e. Fi | t er Chai nFact ory">
<property nanme="input Type" val ue="java.lang. String" />
<property nanme="out put Type" val ue="java.l ang. String" />

<l-- the list of filters -->
<property name="filters">
<list>
<!-- Aclass inplenmenting the FilterChainElement-interface -->
<val ue>or g. openengsb. cor e. cormon. r enot e. JsonMet hodCal | Mar shal Fi | t er </ val ue>
<l-- instance of a filter-factory -->

<bean cl ass="org. openengsb. ports. myport. MyFi | ter Factory">
<propety nane="foo" val ue="bar" />

</ bean>

<l-- The last itemin the list may be an instance of a FilterAction -->

<bean cl ass="or g. openengsb. cor e. cormon. r enpt e. Request MapperFil ter">
<property name="request Handl er" ref="requestHandl er" />

</ bean>

</list>
</ property>
</ bean>

When configuring the filter-chain you have to make sure that each filter in the list is compatible with
its predecessor. Compatibility is checked when the create-method is invoked. In the above example
this would be while processing the blueprint-file.

12.3. Develop custom filters

Thefilters provided by the OpenEngSB only cover the the requirements for the portsthat are provided
by the OpenEngSB itself. For custom ports, custom filter-classes may be required.

Filterclasses that are to be used at the end of a chain must implement the FilterAction-interface. In
order to be usable anywhere in the filterchain the Classes must implement the FilterChainElement-
interface. The interfaces do not use generic parameters because the benefit is really minimal as the
information iserased during compilation. There are however abstract classes (with generic parameters)
that make it easier to implement new FilterChainElements

22

Remoting

12.4. Develop an incoming port

Incoming ports receive messages and process them using a filterchain. There are no restrictions on
how the implementation of the incoming port actually looks like. Typically an incoming port is an
object that spawns alistening thread and uses a filterchain to process incoming messages. Thisis an
example of how the incoming port for IMS could look like.

<l-- exanple of a bean representing an incom ng port -->

<bean i d="i ncom ngPort Bean" cl ass="org. openengsbh. ports. nyport. M/l ncom ngPort" init-method=|'start"

<property name="factory">
<bean cl ass="org. openengsb. ports.jns. JMSTenpl at eFactoryl npl" />
</ property>
<property nanme="filterChain">
<bean factory-ref="i ncom ngFi | t er Chai nFactory" factory-nethod="create" />
</ property>
</ bean>

Every filterchain should use make sureto passthe MethodCall to the RequestHandler in the and (using
a RequestHandlerFilter.

12.5. Develop an Outgoing port

Outgoing port implementations must follow a few more guidelines than incoming ports, because the
OpenEngSB needs to be aware of Outgoing ports present in the system in order to use them in other
components (like RemoteEvents).

An outgoing ports is represented as an OSGi-service that implements the OutgoingPort-interface.
Also it uses the "id"-property (not to be confused with "service.id" defined in the OSGi-spec) as
a unique identification for components that want to interact with remote applications. A reference
implementation of the OutgoingPort-interface is provided in the "openengsh-core-common'-project.

<I-- service representing the outgoing port -->
<service interface="org. openengshb. core. api . renot e. Qut goi ngPort ">
<servi ce-properties>
<entry key="id" val ue="jns-json" />
</ servi ce-properties>
<l-- the outgoing port uses a filter-chain to nmanage the entire calling-procedure -->
<bean cl ass="or g. openengsb. cor e. cormon. Qut goi ngPort | npl ">
<property name="filterChain">
<bean factory-ref="outgoingFilterChainFactory" factory-nethod="create" />
</ property>
</ bean>
</ servi ce>

The actual network-communication is also implemented in a FilterAction. Thisis an example how a
filterchain can be used to handle an outgoing methodCall with a result.

<bean i d="out goi ngFi | t er Chai nFactory" cl ass="org. openengsbh. core. common. renot e. Fi | t er Chai nFact ory" >

<property name="input Type" val ue="org. openengsh. core. api . renot e. Met hodCal | Request" />
<property name="out put Type" val ue="org. openengsb. core. api . r enot e. Met hodResul t Message" />
<property name="filters">

23

dest

Remoting

<list>
<val ue>or g. openengsb. cor e. cormon. r enpt e. JsonQut goi ngMet hodCal | Mar shal Fi | t er </ val ue>
<bean cl ass="org. openengsb. ports.jns. JMSQut goi ngPortFilter">
<property name="factory">
<bean cl ass="org. openengsb. ports.jnms. JMSTenpl at eFactoryl npl" />
</ property>
</ bean>
</list>
</ property>
</ bean>

24

Chapter 13. External Domains and Connectors

Since tools are mostly neither developed for the OpenEngSB nor written in any way that they can
be directly deployed in the OpenEngSB environment a way is required to connect via different
programming languages than Java and from multiple protocols.

13.1. Proxying
The proxy mechanism allows for any method call to be intercepted.

13.1.1. Proxying internal Connector calls

The proxy mechanism allows to create proxies for any domain. To create a proxy you haveto provide
aport id, destination and serviceid to call on the remote service. A Port encapsul ates the protocol that
is used to call another service. There are an OutgoingPort and IncomingPort interface for respective
purposes. The port id is used to load the Port via OSGi. To include a Port in OPENENGSB it just has
to be exported via OSGi. The destination is a string that has to be correctly interpreted by the port to
call theremote server. The serviceid isadded as metadata do identify the service that should get called
on the remote server. It may not be needed for certain implementations.

The proxy calls the CalRouter which redirects the methodcall to the respective Port. Security is
implemented in this layer.

25

Chapter 14. Deployer services

The OpenEngSB supports file-based configuration through its deployer services. These services are
constantly checking the "config/" directory for new/changed/del eted configuration files.

If anew fileis created, its configuration is loaded into the OpenEngSB. When the file changes the
configuration is updated and when it is del eted the configuration is unloaded. Each deployer handlesa
different type of configuration file represented by different file name extensions. Details and structure
of these files are covered in this section.

It should be noted that the OpenEngSB itself uses deployer servicesfor internal configuration. For this
purpose the deployer services aso listen for configuration filesin "etc/". These config files however
are essential for the correct operation of the OpenEngSB and should not be modified.

14.1. Connector configuration

The connector deployer service creates, updates or del etes instances of connector services.

All files in the "config/" directory with the extension ".connector” are handled by the connector
deployer. The .connector files have to be simple property files containing the configuration
properies of a certain connector service and their values. Those files have to follow a
specific form to be read correctly. First of al they follow the pattern: "domain+connector
+instance.connector”. Here "domain" stands for the domainld to use (e.g. notification), "connector"
for the name of the connector which should be created in the domain (eg. mail) and
"instance" is a unique id per connector. A simple UUID or a unique counter should do here.
The content of the file is two-fold. On one hand you can configure the properties of a
servicedirectly using property. NAME_OF THE PROPERTY=VALUE_OF THE PROPERTY (for
example property.location.root=notificaiton). Those properties are directly added to the properties of
aservice. On the other hand you have to configure the connectors themselves. Therefore you have the
attribute NAME_OF_THE_CONNECTOR_ATTRIBUTE=VALUE_TO_ASSIGN. Throwing this
together you can end with a connector file as shown next.

Example 14.1. Example .connector configuration file for the email connector

The email connector is regsitered in the root context with the name notify. The file name has
to be notificaiton+email+dc110658-c6be-4470-8b41-6db154301791.connector which represents a
connector instance with the instanceld dc110658-c6be-4470-8b41-6db154301791 of the eemail
connector in the notificaiton domain.

property. |l ocation.root=notify

attribute.user = user

attribute. password = test
attribute.prefix = [test]
attribute.sntpAuth = true
attribute.sntpSender = test@est.com

25
sntp.testserver.com

attribute.sntpPort
attribute. snt pHost

26

Deployer services

14.1.1. Root services

Note, that root services (i.e. connector services deployed from the "etc/" directory) are deployed with
alower service ranking. Thisis done so that normal services are preferred when matching services.

14.2. Context configuration

The context deployer service creates contexts according to any .context files found in the config
directory. The context id is the file-name (without the extension). The file content will be ignored.
So for example

27

Chapter 15. Client Projects and Embedding The
OpenEngSB

Although the OpenEngSB is distributed as a binary ZIP it is basically not meant to be used that way.
Instead you typically start developing your own project using the OpenEngSB as a base environment
and Maven to assembly your code with the OpenEngSB.

15.1. Using the same dependencies as the OPENENGSB

To use the same dependencies asthe OPENENGSB project you have to import the openengsb-bundle-
settings project into your dependency management section:

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. openengshb. bui | d</ gr oupl d>
<artifactld>openengsh- bundl e-settings</artifactld>
<ver si on>Versi on of OPENENGSB you use</version>
<t ype>ponx/type>
<scope>i nmport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

This will import al the dependencies with the correct versions into the dependencyM anagement
section. Y ou can now define the dependencies shared between your project and OPENENGSB in your
dependencies section without setting the version.

28

Chapter 16. OpenEngSB Platform

The aim of the OpenEngSB project, as for every open source project, is to make the life of everyone
better. Or at least the life of engineers :). With that said, we want to support projects using the
OpenEngSB as base environment, or providing domains and connectors. While it is easy to find a
source repository and use the OpenEngSB (because of its business friendly Apache 2 license), it
is not that easy to get the visibility your project earns. We want to provide you with this visibility
by including your project into the OpenEngSB product family. Basically we provide you with the
following infrastructure:

¢ Sub domain within the OpenEngSB: yourproject.openengsh.org

« Upload space for a homepage at yourproject.openengsh.org

< Two mailinglists (yourproject-dev@openengsh.org and yourproject-user @openengsb.org)
« A git repository at github.com/openengsb/yourpoject

* A place at our issue tracker

* A place at our build server

To get your project on the infrastructure you have to use the Apache 2 license for your code and use
the OpenEngSB. It is not required to have any existing source base. Simply send your project proposal
to the openengsb-dev mailing list and we'll discuss your project. Don't be afraid; it's not as hard as
it sounds;)

29

Chapter 17. HowTo - Setup OpenEngSB for
development (First steps)

17.1. Goal

This section describes the setup process required for OpenEngSB devel opment.
If you would like to view a use-case centric tutorial take alook at the continuous integration example.
17.2. Time to Complete

If you are already familiar with Java EE servers about 15 minutes. We will not be using advanced
concepts, so you likely be able to continue with the tutorial even without it.

17.3. Prerequisites

It is assumed you have basic knowledge of system administration and you are able to set up auxiliary
software (i.e. JDK 1.6) yourself.

17.4. Java Development Kit 6

First of all the JDK6 should be installed on the system and the JAVA_HOME variable should be set.
(Java downl oad).

Also, make sure that the java-command is available in the PATH-variable.

17.5. Getting OpenEngSB

Download the latest OpenEngSB release from here.

17.6. Installing OpenEngSB

Extract the archive, and run the openengsb-script (bin/openengsh.bat on windows, bin/openengsb
otherwise). Click the following link to open the web interface in your browser http://localhost:8090/
openengsb.Y ou should automatically be directed to a page asking for a login. The default login is
"admin" with "password" as password.

Username: |admin Password: |ssssssss Login

login

If everything works fine you should be welcomed by the following page presenting you the currently
installed domains:

30

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openengsb.org/downloads.html
http://localhost:8090/openengsb
http://localhost:8090/openengsb

HowTo - Setup OpenEngSB for development (First steps)

T.00-SNAPSHOT "Groovy Gooly" L4
A
- %en
Home Test Client Send Event Page Context Services Current Project | foo ¥ |logout

A
This page represents the OpenEngSB managementinterface. Via this interface the core systems of the
OpeneEngsB, such as workflows, rules, domains and connectors can be configured and 1ested. This
interface fulfills a similar purpose as administration interfaces in classical application servers as Apache
Tomcal.
© 2009-2010 | Imprint

main page

17.7. Setup required domains

OpenEngSB implements it's functionality in so called features. Each feature contains a number of
OSGi bundles. While all features are distributed with the OpenEngSB not all of them are installed
to speed up the startup. For the next section (First Steps) it is required to install additional features.
Therefore open the console in which you've started the OpenEngSB and enter "list" which should
output something like:

karaf @oot> |i st
START LEVEL 100 , List Threshold: 50

ID State Bl uepri nt Level Nane
42] [Active] [Created 1 60] Apache Karaf :: Shell :: Service Wapper (2.2)
116] [Active [60] Jackson JSON processor (1.5.3)

] 11
165] [Active] [Created 1 [60] OpenEngSB :: Framework :: APl (Version)
166] [Active] [Created 11 60] OpenEngSB :: Framework :: Engineering Database| (Version)
167] [Active] [Created 10 60] OpenEngSB :: Framework :: Engineering Know edge Base (\Vers
168] [Active] [Created 1 60] OpenEngSB :: Framework :: Conmmon (Version)
169] [Active] [Created 11 60] OpenEngSB :: Framework :: Services (Version)
170] [Active] [Created 10 60] OpenEngSB :: Framework :: Persistence Layer (Version)

In order to install domains and connectors from other repositories you need to add the corresponding
feature-URLSs. Note that in order to install a connector you need to install all domainsit implements.

In order to install a domain first add the feature-repository using the command f eat ur es: addur | .
When the URL has been added the domain can usually be installed using f eat ur es: i nst al |

r oot @penengsh>f eat ur es: addur |

r oot @penengsb>f eatures:install openengsbh-domai n-notification

Note that domains and connectors are versioned independently of each other and the OpenEngSB.

mv/n: or g. openengshb. domai n/ or g. openengsh. domai n. noti fi cati on/[domai n vers

31

HowTo - Setup OpenEngSB for development (First steps)

17.8. First Steps

Now that the OpenEngSB is up and running (and all required bundles are installed) start with the first
integration tutorial.

17.9. Shutdown OpenEngSB

To shutdown the OpenEngSB, go to the command-window and type shutdown or press Ctrl+D

32

Chapter 18. HowTo - First steps with the
OpenEngSB (Send mails via the OpenEngSB)

18.1. Goal

This section describes a"hello world" use-case for the notification domain using the email connector.

18.2. Time to Complete

If you are aready familiar with setting up services in OpenEngSB about 15 minutes. (see HowTo:
Setup

18.3. Prerequisites

This HowTo assumes you have already a running instance of the OpenEngSB.

18.4. Creating E-Mail Services

Create a new Email Notification Service by clicking the "New..." link for the Email Notification on
the Test Client link.

+ Logging Service Logs messages with a specific log level to the OSGi logger. New... =1
+ Example Domain Proxy service Proxy service to interact with external services New...

Services:
=3 Select Instance
== BuildDomain
) domain.build (org.openengsb.domain.build.BuildDomain)
=3 DeployDomain
) domain.deploy (org.openengsb.domain.deploy.DeployDomain)
=-3SCM Domain
) domain.scm (org.openengsb.domain.scm.ScmDomain)
=-=3Issue Domain
) domain.issue (org.openengsb.domain.issue.lssueDomain) k
=-=3TestDomain
1 domain.test (org.openengsb.domain.test.TestDomain)
=7 Report Domain
[} domain.report (org.openengsb.domain.report.ReportDomain)
=3 Notification Domain
[) domain.notification (org.openengsb.domain.notification.NotificationDomain)
[testl (org.openengsh.domain.notification.NotificationDomain)
[0 test2 (org.openengsb.domain.notification.NotificationDomain)
=3 Example Domain
) domain.example (org.openengsb.domain.example.ExampleDomain)
Choose One v

Call | | Edit Service

© 2009-2010 | Imprint

4]

test client

In the following view you have the possibility to configure the Notification Service. The following
screen provides an example for a Gmail account. Please use "test1" for the Service Id field.

33

#howto.setup
#howto.setup

HowTo - First steps with the OpenEngSB
(Send mails via the OpenEngSB)

T.0.0-SNAPSHOT "Graavy Gooly” L]

-:"‘ien

Home Test Client Send Event Page Context Services Current Project| foo ¥ | logout
A

Creating new Email Notification

This is a Email Notification Service

Service Id |test1 =

Username |exam ple@gmail.com ~

Password | ‘‘‘‘‘‘‘ =

Prefix |TESTMAIL] -

Authentification «
Sender Emailadress |example@gmail.com =

SMTP Port 465 =

SMTP Host |smtp.gmail.com <

~Validate Service

© 2009-2010 | Imprint

email notification

When you have finished setting all fields to appropriate values, create the new instance by clicking
the "Save" button.

Now create another service with the Service Id "test2". Otherwise you can use exactly the same values
again.

Y ou can validate the services open the "Services' page, which should look similar to the following
screenshot. All your created services should be available with the state "ONLINE".

1.0.0-SNAPSHOT "Graovy Gooly” <
A
- ien
Home Test Client Send Event Page Context Services Current Project | foo ¥ | logout

A

Services with state = Connecting

[No Services available]

Services with state = ONLINE

[No Services available |

Services with state = OFFLINE
+ testl This is a Email Notification Service Update Service Delete Service

« test2 This is a Email Notification Service Update Service Delete Service

Services with state = Disconnected

[No Services available |
© 2009-2010 | Imprint

overview

18.5. Executing Service Actions Directly

Now we're going to validate the created services. First of al start by open the "Test Client" link. Now
open the "Notification Domain" tree and choose test1. Next get the notify method from the drop down
box. The available fields should change instantly. L et the attachment field free and enter anything into

HowTo - First steps with the OpenEngSB
(Send mails via the OpenEngSB)

18.6.

message and subject. The address should be avalid email address (not validated for the moment). After
all the view should look similar to the following image:

IS WU 1S PIUVILED a5 211 SAITEIE U1 &l UEVEIUPES, ILSHULIL UL UE USEU 11 PIuuusuun,

(x]
+ Logging Service Logs messages with a specific log level to the OSGi logger. New...
+ Example Domain Proxy service Proxy service to interact with external services New...

Services:
=3 Select Instance
=] BuildDomain
] DeployDomain
+] SCM Domain
#]lssue Domain
=] TestDomain
=] Report Domain
=3 Notification Domain
[domain.notification (org.openengsb.domain.notification.NotificationDomain)
[testl (org.openengsb.domain.notification.NotificationDomain)
=] Example Domain
notify(org.openengsh.domain.n ¥
1

attachments : L
message |test

recipient |example@gmail.com

subject |test

Call | | Edit Service

& 2009-2010 | Imprint =

notification properties

Call the service by using the "Call" button. Some seconds after you've pressed the call button the
following message should occur on on your screen:

Methodcall called successfully

success
Within the next seconds to minutes the address, specified by you, should receive a mail.

Next validateif the servicetest2 doesthe same. Therefore press on test2, choose notify again and enter
your values. Click "Call" again and validate if you receive an email.

Executing Service Actions via Domains

Till now you've used the services directly. Now one of the OpenEngSB core concepts is presented:
the Domains:

To send messages via domains, instead of directly via the connectors a default receiver for a specific
project hasto be set. A graphical user interface for doing so isthe "Context Page":

35

HowTo - First steps with the OpenEngSB
(Send mails via the OpenEngSB)

1.0.0-SNAPSHOT "Groovy Gooly” —
A
- ien
Home Test Client Send Event Page Context Services Current Project | foo ¥ |logout
A

Expand all nodes Collapse all nodes

Tree Column value

=5 domain

=3 ExampleDomain
=7 defaultConnector
[id example
== IssueDomain
(=) defaultConnector
O issue
=3 NetificationDomain
=5 defaultConnector
O notification

path "~ | value save

© 2009-2010 | Imprint

context

Change the entry "domains/NotificationDomain/defaultConnector/id” to testl or test2. Do this by
clicking on thenode (id). Thisshould create adrop down box next to it. Select test1 or test2. Afterwards
go back to the "Test Client" page and select "Notification Domain/domains.notification". Now choose
the notify method again and try sending a message to yourself.

Again, the call was successful if you receive a message (with the prefix of the notifier you've chosen
in the context).

Congratulations, you have just finished the first implementation HowTo of Open Engineering Service
Bus.

18.7. Next Steps

Now that you've finished the most easy OpenEngSB use case go on with amore complex one: Events

36

#howto.contexteditor

Chapter 19. HowTo - Events with the OpenEngSB
(Using the logging service)

19.1. Goal

Thistutorial shows how the event system in the OpenEngSB can be used. Thereforealog and adomain
connector are created and configured. The context system in the OpenEngSB is used to define which
connectors should be used and asimple event is used starting arule.

19.2. Time to Complete

If you are already familiar with using services in OpenEngSB about 30 minutes. (see HowTo: First
steps)

19.3. Prerequisites

This HowTo assumes you are already familiar with using and configuring services in OpenEngSB.

19.4. Create required connectors

Now one logging service and one email service should be created. Create one notification service as
described in the previous example. Please name it "notification” instead of test1 or test2. Now create
alogging service:

1.0.0-SNAPSHOT "Groovy Gooly” L
A
- ﬁen
Home Test Client Send Event Page Context Services Current Project | foo ¥ |logout
o
Creating new Logging Service

Logs messages with a specific log level to the OSGi logger.

Service Id |example

Prefix |logging
Log Level [INFO v~
Flush 1 —

¥ Validate Service | Save

© 2009-2010 | Imprint
logging service

19.5. Configure

Go to the "Context" page and configure the domains to use the connectors created:

37

#howto.logging
#howto.logging
./howto_logging.html

HowTo - Events with the OpenEngSB (Using the logging service)

1.0.0-SNAPSHOT "Groovy Gooly” —
A
- ien
Home Test Client Send Event Page Context Services Current Project | foo ¥ |logout
A

Expand all nodes Collapse all nodes

Tree Column value
=5 domain
=3 ExampleDomain
=7 defaultConnector
[id example
== IssueDomain
(=) defaultConnector
O issue
- &7 NotificationDomain
=5 defaultConnector
O notification

path "~ | value save

© 2009-2010 | Imprint

context overview

19.6. Creating arule

On the "Send Event Page" you can create and edit Rules. Therefore they have to be edited directly
with atext editor. Theinitial system is empty and does not include any rules. To create arule choose
"new". Enter "hellol" into the rulename input field. Make also sure that "Rule" is selected in the type
dropdown box.

As soon as you edit the content of the rule you can save your changes by clicking "save" or
revert the changes by clicking "cancel". The name of the rule will automatically be prefixed with
"org.openengsh”. Please insert the following content into the text box and save the changes:

#

My notification rule

#

Sends "Hello World" notification to test recipient.
#

when
Event (nane == "42")

t hen
exanpl e. doSonet hi ng("Hel l o World");
Notification n = new Notification();
n. set Subj ect ("testsubject");
n. set Message("t est Message") ;
n. set Reci pient ("testRecipient");
notification.notify(n);

38

HowTo - Events with the OpenEngSB (Using the logging service)

1.0.0-5NAPSHOT "Groovy Goofy" [5
A
- ﬁen
Home Test Client Send Fvent Page Context Services Current Project foo + logout
A

org.openengsb.core.common v

name foo

Rule + hellol new save cancel

Copyright 2010 OpenEngSB Division, Vienna University of Technology

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS"™ BASIS,
WITHOUT WARRANTIES OR CONDITICNS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

R I I T T T e I T T I I T T T

Event (name == "42")

example .doSomething ("Hello World™):
Notification n = new Notification():
n.zetSubject ("testsubject™)
n.setMessage ("testMessage")

n.setRecipient ("testRecipient™);
notification.notify(n);

© 2009-2010 | Imprint

event

Basically this rule reacts on all events (when clause). "log" is a helper class using the default log
connector of thelog domain to writeinformation to alog file. Notification uses the default notification
connector to inform a person. More details about this topic can be found in the user documentation
at rules, domains and connectors.

To run atest the n.setRecipient property should be changed to a (e.g.) your email address.

19.7. Throw Event

Now we can throw an event and see if the rules work correctly. Stay on the "Send Event Page" enter
for the contextld field "foo" and press send:

foo represents the name of the project. For a detailed description about projects and the context see
the user documentation. Y ou've should received a email viathe rule to the email address configured
previoudly). In addition using the "log:display” command in the OpenEngSB console should present
(anywhere in the long log) alogging entry similar to the following (you have to search for the output
of the LogService. The other fields can change):

©1:87:07,503 | INFO | btpoole-1 | LogService | le.connector.internal.logService 40 | LogTester: Hello World

output

39

HowTo - Events with the OpenEngSB (Using the logging service)

19.8. Next Steps

Congratulation. You've gained basic knowledge about the OpenEngSB and its functionality.
Nevertheless, you've just touched the surface. As anext step it is recommended continue with further
tutorials user manual and start exploring the world of the OpenEngSB.

40

Chapter 20. HowTo - Create a Client-Project for the
OpenEngSB

20.1. Goal

This tutorial describes how to setup a client project for OpenEngSB using maven archetype

20.2. Time to Complete

If you are already familiar with the OpenEngSB about 30 minutes (Thisincludes only the setup for the
project). If you are not familiar with the OpenEngSB please read this manual from the start or check
the homepage for further information.

20.3. Step 1 - Needed tools

Y ou need to have following tools to be installed

20.3.1. Java Development Kit 6

First of all the JDK6 should be installed on the system and the JAVA_HOME variable should be set.
(Java download). Also, make sure that the java-command is available in the PATH-variable

20.3.2. Maven 3

Y ou will also need Maven 3 be installed on your system. (Maven download) Also, make sure that the
maven-command is available in the PATH-variable

20.4. Step 2 - Using the archetype

The OpenEngSB provides an maven archetype to create a client project. To use it go into your target
directory and type in ashell:
mvn openengsh:genClientPr ojectRoot

The script generates the result in the directory from where it was started

Y ou will be asked to fill out following values (if no input is provided the default value is kept):

Project Goup Id [org. openengsb.client-project]:

Project Artifact |Id [openengsb-client-project]:

Project Name [Cient-Poject]:

Proj ect Version [1.0.0- SNAPSHOT] :

Project Description [This is a client project for the OpenEngSB]:
Project Ul [http://ww.openenbsb. org]:

OpenENngSB version [1.2. 0- SNAPSHOT] :

OpenEngSB maven plugin Version [1.4.0- SNAPSHOT] :

Pl ugi n Assenbly version [2.2-beta-5]:

Y ou will be asked what the groupld, artifactld and a name of your client project should look like. Y ou
can a'so specify the OpenEngSB version you want to use, but it is recommended to use an up-to-date

41

http://www.openengsb.org
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html

HowTo - Create a Client-Project for the OpenEngSB

version. To check the current OpenEngSB version have alook at the Download section. It asks you
to confirm the configuration and will create the project.

20.5. Step 3 - The result

If everything worked as expected you will get a client project having following structure:

*-- openengsb-client-project
- assenbly
| -- pom xm
- src
T-- main
| -- descriptors
| “-- bin.xm
“-- filtered-resources
|-- etc
| ‘-- org.apache. karaf . features. cfg
|-- features.xm
" -- README. t xt
- core
- pom xmi
docs
- honepage
| -- pom xm
T-- src
T-- site

- manua
| -- pom xm
.- src

T-- pom xm
- LI CENSE
pons
- conpil ed
*-- pom xm
- nonosg
T-- pom xm
- pom xmi
“-- wrapped
T-- pom xm
-- pom xmi
" -- README. nd

Y ou can find further information about these modules in the OpenEngSB-M anual

20.6. Step 4 - Install features

To install features to the project have alook at the file org.apache.karaf .features.cfg in assembly/src/
main/filtered-resource/etc. Here you can define features to be registered by default or which feature
should be installed on startup. To install your own features see the file features.xml in assembly/src/
main/filtered-resource. E.G.: Y ou want to add a module called clientproject-ui the core features add
thisto the features.xml

<bund|e>nvn:org.openengsb.c|ientproject.ui/clientproject-ui-meb$\{project.version\}/Lar</bundle>

42

http://www.openengsb.org/downloads.html
http://www.openengsb.org/manual/index.html

HowTo - Create a Client-Project for the OpenEngSB

20.7. Step 5 - Start the Client-Project

To start the client-project, go to the command-window and type

m/n cl ean install openengsb: provision

Now you can enter "list" into the karaf console to check what features are installed and running

20.8. Step 6 - Shutdown

To shutdown, go to the command-window and type "shutdown" or press " Ctrl+D"

43

Chapter 21. HowTo - Interact with the OPENENGSB
Remotely

21.1. Using JMS proxying

Thecurrent IM S Connector allowsfor internal method callsbeing redirected viaIM Saswell asinternal
services being called.

For resources regarding JMS please take a look at the according Wikipedia Page and for specific
language bindingstake alook at ActiveMQ

21.1.1. Proxying internal Connector calls

Whenever now amethod is sent through the IM S Port the call ismarshalled and sent viaJM Sto aqueue
named "receive"". The marshalling is done via JSON. The mapping has the parameters methodName,
args, classes, metadata and potentially answer and callld. methodName gives the name of the method
to call. Args are the serialised parameters of the method. classes are the types of the arguments. This
way it is easy to unmarshall the args into the appropriate classes. metadata is a smple Map which
stores key value pairs. answer can simply be yes or no and denotes if the methodcall wants an answer
tothe call. callld gives the return queue the caller will listen to for an answer.

An answer can have the type, arg, className and metaData properties. type can be Object, Exception
or Void. arg isthe serialised form of the return argument. classNameisthe runtime class of the arg for
deserialisation. metadatais a simple key value store.

21.1.1.1. HowTo call an external service via proxies
This section will give a short introduction how to instantiate a proxy and call an external connector

First you have to go to the TestClient to instantiate a new Proxy. Select the Domain you want to have
proxied and click New Proxy for that Domain.

e Example Domain
New Proxy <
org.openengsb.domain.example.ExampleDomain
This domain is provided as an example for all dev

o Logging Service Logs messages with a s|

Testclient new proxy link

Then you have to set the correct values for the proxy properties. The Service Id is a unique value that
identifies the proxy in the OPENENGSB system. The Port Id defines to Port to be used for sending
the regquest. "jms-json” is a currently supported Port that sends the request via a json encoded IMS
message. The destination describes the endpoint the message should be sent to. When using jms-json
the domain and port of the IMS provider have to be set. When calling aremote connector the uniqueid

http://en.wikipedia.org/wiki/Java_Message_Service
http://activemq.apache.org/connectivity.html

HowTo - Interact with the OPENENGSB Remotely

of the remote service or connector has to be provided. This way the remote service can identify, load
and call a certain service. If the call is not intended to go to another OPENENGSB, or the external
service needs no identification of the service to call the remote service id can be omitted.

Creating new Proxy for Beispiel Domadne

Proxy Connector to call external services

Service Id exampleService
Port ID jms-json
Destination localhost:6549

Remote Service Id [remote-service

v Validate Service
Save

Create Proxy

After saving the proxy you should be able to test it via the TestClient page. Following is an example
of an unsecured call:

{

"aut henticationData": {
"cl assNanme": "or g. openengsh. core. api . securi ty. nodel . User nanePasswor dAut hent i cati onl nf 0"
"data": {
"usernane": "adm n",
"password": " password"
}
b
"tinestanp": 42,
"message": {
“call1d":"xyz",
"answer":true,
"nmethodCal | ": {
"classes": [
"java.lang. String",
"or g. openengshb. core. api . wor kf | ow. nodel . ProcessBag"
Il
"met hodNanme": "execut eWor kf | ow',
"metaData": {
"serviceFilter": "(objectC ass=org.openengsb. core. api . wor kfl ow. Wor kf | owSer vi ce) ",
"context!ld": "foo"
b
"args": [
"si mpl eFl ow',

IF you would like to use security instead you should prefer the following call:

{

45

HowTo - Interact with the OPENENGSB Remotely

"encrypt edCont ent ": "encodedMessage", // Base 64 and encryped string of the nessage above
"encrypt edKey": "encodedKey" // The encoded key

Services:
= Select Instance
+ J AuditingDomain
=~ Example Domain
L) domain.example (org.openengsb.domain.example.ExampleDomain)
L) exampleService (org.openengsb.domain.example.ExampleDomain)
doSomething(java.lang.String) v
Argument #1
value [string

Call Edit Service

Test aproxy

When proxying connector calls you have to provide an answer to every call, asthe system blocks until
it gets an answer. Y ou have to send a JSON message containing a type string parameter, which can
be Object, Exception or Void depending on the return argument of the method, arg where you simply
serialise the Return Object, so it can be deserialised into the correct object later and className which
gives the exact class that has to be used for deserialisation. The request contains a parameter callld
which is the name of the queue the answer has to be sent to.

{"type":"oject", "cl assNanme": "org. openengsb. core. ports.jns. JMSPort Test $Test C ass",
"metaData": {"test":"test"},"arg":{"test":"test"}}

Whenever acall to thisproxy isthen made anew JM Smessage will be sent to the""receive" queueonthe
destination you entered. The exact make up of the message was already described. When implementing
an external connector it is best to test the call you want to receive first via the TestClient, so you get
the exact message that you will have to work with.

Please always keep in mind security. By default security is turned on. If you want to turn it off please
takealook intotheet c/ syst em properti es file. While using no security for testing isvery interesting
we would not advise you to send unencrypted messages in a production environment.

21.1.2. Calling internal Services

To cal aninternal Service send a methodcall as described before to the "receive" queue on the server
you want to call. The service works exactly as defined before. There currently are two ways of
specifying which service to address.

 serviceld: Thiswill call the service that was exported with the specified "id"-property. It behaves
like the following Filter in OSGi-syntax: (i d=<ser vi cel d>)

 serviceFilter: Thisway you can specify any filter in OSGi-syntax to adress the service, so it is not
necessary to bind the client to a specific id, but to other properties as well (e.g. 1 ocati on. root,
| ocati on. <cont ext >, obj ect d ass,)

You can aso use both attributes (serviceld and serviceFilter). It will create a filter matching both

constraints.

Example: if you want to execute a workflow via the WorkflowService send

46

HowTo - Interact with the OPENENGSB Remotely

{"callld":"12345","answer":true, "cl asses":["java.l ang. Stri ng",

"org. openengsb. core. api . wor kf | ow. nodel . ProcessBag"],

"met hodNane": " execut eWor kf | ow', " et aDat a": {"servi cel d": "wor kf | owSer vi ce",
"contextld":"foo"},"args":["sinpleFlow, {}]}

Please be aware that the flow the above method tries to call (simpleFlow) is not available by default
on the OpenEngSB. To make sure that there's a flow you can call install the flow in the OpenEngSB.
Therefore start the OpenEngSB and go to the SendEventPage. There choose to create a new process
and press new. Now enter simpleFlow as processname and past the following process:

<process xs:schenmalLocation="http://drools.org/drool s-5.0/process
dr ool s- processes-5. 0. xsd" type="Rul eFl ow' name="si npl eFl ow' i d="si npl eFl ow"
package- name="or g. openengsbh" xm ns="http://drool s. org/drool s-5. 0/ process"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<header >
<vari abl es>
<vari abl e name="processBag" >
<type name="org.drool s. process. core. dat atype.inpl.type. Obj ect Dat aType"
cl assNanme="or g. openengsb. cor e. api . wor kf | ow. nodel . ProcessBag"/ >
</vari abl e>
</vari abl es>
</ header >
<nodes>
<start id="1" pane="Start" x="16" y="16" wi dth="91" hei ght="48"/>
<end id="2" name="End" x="21" y="168" w dt h="80" hei ght ="40"/>
<actionNode id="3" name="Action" x="21" y="96" wi dth="80" hei ght="40">
<action type="expression" dial ect="nvel">
processBag. addProperty(“test", 42);
processBag. addProperty("al ternati veNane", "The answer to |life the universe and everythjng");
</ action>
</ acti onNode>
</ nodes>
<connecti ons>
<connection fron¥"3" to="2"/>
<connection from="1" to="3"/>
</ connecti ons>
</ process>

After pressing save you can access the process via the message shown above.

to thereceive queue onthe OPENENGSB JM S Port whichis started by default on Port 6549. Make sure
that classes and args has the same number of arguments. If you just want an object to be instantiated,
but have no corresponding values that should be set for the object smply add {} (asin the example
above) which will instantiate the object but recognize, that no values have to be set on the object.
{"name" : "SomeName"} would on the other hand call the setName method with SomeName.

The response to the above message will be returned on a queue you've pasted viathe callld field.

21.1.3. Examples

We provide examples in different languages how to connect to the OpenEngSB. The examples are
grouped according to language and the documentation to the different examples are directly donein
the code of the examples. We try to keep those examples as good as possible up-to-date, but do not
gurantee that they all work as expected since we can't add them to our integration tests. If you want to
provide examplesin different languages you're always wel comed to provide them.

47

http://localhost:8090/openengsb/SendEventPage/

HowTo - Interact with the OPENENGSB Remotely

21.1.3.1.

21.1.3.2.

21.1.3.3.

21.1.4.

Connect With Python

To test the OPENENGSB JM S implementation with Python please follow the instructions
The exampl e can be downloaded here

Connect With CSharp

The CSharp connector iswritten on basis of the Apache ActiveM Q JM S connector. Therean EngSB.sln
file. This project file has been developed with SharpDevelop 4, but is also tested with Visua Studio
2008 CSharp Express Edition with the .Net Framework 4.

The example can be downloaded here
Connect With Perl

As shown in this example you can connect to the OpenEngSB in a similar way as with Python or
CSharp.

The example can be downloaded here
Alternatives for JIMS

In addition to providing a very general infrastructure we also support the specialities of the various
protocols. For IMS e.g. you've the possiblitiy to make use of the JnsCorrelationld and JmsReplyTo
fields. If you set the IMSReplyTo field messages will be returned there instead of to the calld. In
addition, if you set acorrelationld in your messageit will be set in the outgoing message too. Otherwise
the messagel D is now written into the correlationl D field.

21.2. Using WS Proxing

21.3. 1

TBW(JiralSSUE)

nternal Specialities

Basically thereisnothing special to do to get up aservice. Still, sincejavahasno static typeinformation
there is no possibility to marshal things like aj ava. util . Li st of options. The fix we've introduced
for this problem is to annotate parameters and define a custom marshaller. Therefore create a class
with a default constructor extending CustomJsonMarshaller. Then annotate the parameter of the
implementations you're using with the UseCustomJasonMarshaller annotation adding the Marshaller
class. That's it. The framework will automatically create the mapper and call the transform method
for you.

Since there is an issue right now with Aries Proxies hiding parameter annotations the
CustomMarshallerReal TypeAccess interface provides a workaround for the problem. In case this
interfaceisfound the class provided by it isused for searching. Otherwise the classdirectly is scanned.

48

${github}/docs/examples/src/main/python/PythonClient.txt
/org/openengsb/docs/openengsb-docs-examples/2.5.1/openengsb-docs-examples-2.5.1-python.zip
/org/openengsb/docs/openengsb-docs-examples/2.5.1/openengsb-docs-examples-2.5.1-csharp.zip
/org/openengsb/docs/openengsb-docs-examples/2.5.1/openengsb-docs-examples-2.5.1-perl.zip
http://issues.openengsb.org/jira/browse/OPENENGSB-2507

Chapter 22. HowTo - Combine multiple connectors

It ispossible to combine several connector-instancesto one parent connector that appearsto workflows
like any other connector. For example you may want to have severa notification-connectors in a
workflow. It usesthelocation-placeholder "foo". So when the workflow expectsthe connector-instance
at location "foo", you may want it to call multiple connectors. One would expect that simply assigning
the location "foo" to every connector would create this behaviour, but it doesn't. By default, the
connector with the highest service ranking is chosen (see OSGi-core-specification section 5.5.5).

22.1. Composite strategies

There are also other issues with using multiple service in aplace where one single service is expected:
 Should the services be called concurrently or sequentially?
« Which service should be called first?

« What should be returned as a result?

All this is specified by a CompositeStrategy. Strategy-implementations must implement the
CompositeConnectorStrategy interface and be registered as OSGi-services exporting this interface.
Also the service must specify the "composite.strategy.name” property. The strategy is provided with
a list of ServiceReferences, and the invocation parameters. The implementation can decide which
services to resolve and to invoke. Also the strategy must return asingle resullt.

22.2. Create a composite connector

A composite connector instance can be created like aregular connector-instance. Y ou need to supply
the following attributes:

e querystring: astring representing an OSGi-query. All servicesthat match this query are passed onto
the strategy as ServiceReferences. Example: Suppose we have two notification services. One hasthe
property | ocati on. f oo=noti fi cati on/ 1 and the other onehasi ocat i on. f co=noti fication/ 2. A
possible query-string for the composite-service could be (1 ocat i on. f oo=noti fication/*).

» composite-strategy-name: The name of the strategy that should be used.

49

Chapter 23. How to define a domain model

23.1. Goal

This tutoria explains how to define a domain model for a specific domain. What a domain moddl is,
can be read in the user manual in the semantics section(Chapter 6, Semanticsin the OpenEngSB). The
structure of adomain model is an interface which extends the OpenEngSBModel.

23.2. Time to complete

If you are already familiar with the OpenEngSB about 10 minutes. If you are not familiar with the
OpenEngSB please read this manual from the start or check the homepage for further information.

23.3. Prerequisites

For information about how to get started as contributor to the OpenEngSB project and how to get the
current OpenEngSB source please read the contributor section of the manual: Part V, “ OpenEngSB
Contributor Detail Informations”.

23.4. Step 1 - Plan the structure of the model

The first thing to do is to think about the structure of the model you need. Think about which
informations are needed and should be included. (e.g. if you want to create a domain model for an
appointment domain, the domain model will contain informations like start time, end time, title, ...).

Also give athink about if there exists a field which has the potential to be the id of a model. Such
afield has to be unigue for a specific domain and connector combination. Such an id can be defined
through an annotation with the name OpenEngSBModel.

23.5. Step 2 - Write the model

Writing amodel is quite simple. A domain model is an interface, which contains only pairs of getter
and setter methods. The method names define the internal names of the fields of the model. Example
model:

i nterface Appoi ntnent extends OpenEngSBModel {
@penEngSBMbdel | d
voi d setld(lnteger id);
I nteger getld();

void setStartTine(Date startTi nme);
Date getStartTi nme();

voi d set EndTi me(Date endTi ne);
Dat e get EndTi nme();

50

http://www.openengsb.org

How to define a domain model

This model defines a part of adomain model for an appointment domain. In this model we also have
defined the id of the model, with the name id. Y ou can see that through the set annotation.

23.6. Step 3 - Add the model to a domain

The last step is to add the model to the specific domain. For that you simply have to add the model
to the model package in the specific domain. Now the model is ready to use in the connectors for the
specific domain.

23.7. Step 4 - Use the model

The last step is to use the model. For that you have to use a util class which is placed in the core/
common bundle called ModelUtils. An instantiation of a model 1ooks like this:

Appoi nt nent appoi ntment = Mbdel Uil s. creat eEnpt yModel Obj ect (Appoi nt nent . cl ass)

After that you can use the appointment object like a normal instantiated object.

51

Chapter 24. HowTo - Integrate services with
OpenEngSB

24.1. Goal

The serviceintegration tutorial shows how to combine and automate different software tools, services
and applications with OpenEngSB. To show OpenEngSB's versdtility the use case we will be
implementing is a continuous integration (CI) tool for software development processes. The tutorial
takes a straight forward approach favoring visible results over architectural details of tool integration.
Whether or not you have experience with Cl, bear with the tutorial for a moment and you will see
how simpleit works out.

Before we get started let uslay out theidea of our CI tool and create a step-by-step development plan.
The practice of continuous integration aims at improving software quality by frequent (automated)
building and testing of aproject's source base and by reporting back to the devel opers. The Cl tool must
be able to access the source repository, build the project, test the binaries and reportsto the devel opers.
And there we have a basic four step plan:

(1) Repository access
(2) Building source

(3) Testing binaries

(4) Notification process

If youwould liketotakealook at afully functional ClI server built on OpenEngSB check out OpenCIT.
It implements awider range of features, but it's a great reference.

24.2. Time to Complete

If you are already familiar with the OpenEngSB about 30 minutes. If you are not familiar with the
OpenEngSB please read this manual from the start or check the homepage for further information.

24.3. Prerequisites

It is assumed you have basic knowledge of software development practices and you are able to set up
auxiliary software (i.e. JDK 1.6) yourself.

Warning: This section is likely to change in the near future, as the web Ul as well as domains and
connectors are subject to change.

52

http://opencit.openengsb.org
http://www.openengsb.org

HowTo - Integrate services with OpenEngSB

24.4. Setting up OpenEngSB

z] Stable (1.1.2.RELEASE)

The latest stable release of OpenEngSB is 1.1.2.RELEASE.
+ OpenEngSB (stable) multiplatiorm >
« Download CpenkEngsSB 1.1.2. RELEASE source. (zip o, far
download openengsb

Getting OpenENgSB is simple. Go to openengsb.org, download the latest stable version to your
computer and unpack the archive to a convenient location. Before you fire up OpenEngSB for thefirst
time, please make sure you have a Java Development Kit 1.6+ available and set up.

. alex@ubuntu: ~/Desktopfopenengsb-1.1.2.RELEASE /bin

File Edit View Search Terminal Help
alex@ubuntu:~/Desktop/openengsb-1.1.2.RELEASE/bin$._.f"upeneng_stﬂ

openengsb console

Y ou can startup OpenEngSB via the openengsb script in the "bin" folder. If you want to explore the
web interface yourself before digging into implementing the Cl use case, open up your web browser
and navigate to http://localhost:8090/openengsb and log on as "admin" with password "password".

Mozilla Firefox

ry Bookmarks Tools Help

@ < | http://localhost:8090/openengsb/

etting Started [R]Latest Headlines v “w OpenEn
openengsb web Ul

If you want to take a break or shutdown OpenEngSB in the middle of the tutorial, go ahead and do
not worry. All changes made so far are saved and restored upon restart, so you can continue working
with the most up-to-date state. Use the shutdown command in OpenEngSB's management console to
stop any running services.

53

http://www.openengsb.org
http://www.openengsb.org/downloads.html
http://localhost:8090/openengsb

HowTo - Integrate services with OpenEngSB

24.5. Step 1 - Source repository

alex@ubuntu: ~
File Edit View Search Terminal Help
alex@ubuntu:~% mvn --version
Apache Maven 3.0.2 (rl@56858; 2011-01-09 01:58:10+0100)

Java version: 1.6.8 20, vendor: Sun Microsystems Inc.
Java home: fusr/lib/jvm/java-6-openjdk/jre

Default locale: en US, platform encoding: UTF-8

05 name: "linux", version: "2.6.35-25-generic", arch: "i3%
alex@ubuntu:~$ []

check maven and JDK version

It turns out, we actually need a sample project before we can start developing and testing our Cl tool.
In thistutorial we will be using Apache Maven for project and source management and a small Hello
World application written in Java. For this to work flawlessly we need JDK 1.6+ (download) and
Maven 3+ (download) to be set up on the computer.

< | |{if alex | Bl Desktop || openengsb-tutorial

- -

SIC target pom.xml

tutorial project package

You may download and extract the openengsb-tutorial (download) project that works out of the
box or set up your own sample project via maven archetypes. Put the project files in a memorable

location (i.e. "/home/user/Desktop/openengsb-tutorial” or " C:\usersiuser\desktop\openengsb-tutorial")
and that's about it for now.

24.6. Step 2 - Building the source code

>ena event rage Lonext Dervices 1 ASK-UVEerview
Username: |admin Password: |ssssssss Login
login

You could certainly build the project using Maven, but we want this to happen from within
OpenEngSB. Open up your browser and go to the web interface at http://|ocal host:8090/openengsb.
Authenticate using the Login link as "admin" with password "password".

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html
/org/openengsb/docs/openengsb-docs-examples/2.5.1/openengsb-docs-examples-2.5.1-citutorial.zip
http://localhost:8090/openengsb

HowTo - Integrate services with OpenEngSB

Home Test Client Send Event Page Col

User Management

Services:

« AuditinaDomain
test client

Switch to the Test client tab and check whether the build domain is available to accept commands.

—_ —_ — P’ B

karaf@root> features:install openengsb-connector-

openengsb-connector-email openengsb-connector
openengsb-connector-jira openengsb-connector

openengsb-connector-plaintextreport openengsb-connector
karaf@root> features:install openengsb-connector-maven
karaf@root> []

install connector in console

As the build domain is not shown, we will need to go to OpenEngSB's console. Use the
"features:install openengshb-connector-maven” command to load thetool connector for Apache Maven.
The tool connector allows OpenEngSB to communicate with an external service or application,
Maven in this case. By loading the connector OpenEngSB a so loads the domains associated with the
connector. A domain is a generic interface that is implemented by specific connectors. For example,
the build domain offers a generic function to build a software project. Whether thisis done by Apache
Maven, an Ant script or a plain compiler depends on the connector chosen by the user, but does not
affect the basic model of our CI tool that simply "builds" the source. Using this technique specific
tools can be exchanged quickly and transparently while data-flow and process models are completely
unaffected.

* BuildDomain
New Proxy
org.openengsb.domain.build. BuildDomain

Domain for building projects

o Maven Connector Maven connector for the build, test and deploy domain. New..

ok

rvices:
—1Select Instance

create new connector instance

Now let usreturntotheweb interface. After apagerefresh weare ableto create anew Maven connector
instance by following the new link next to the connector description.

55

HowTo - Integrate services with OpenEngSB

Creating new Maven Connector

Mawven connector for the build, test and deploy domain.

Service Id builder
Project path | /home/alex/Desktop/opener
Maven command |clean compile

& validate Service
| Save |

setup build connector

The serviceid isan arbitrary name that can be referred to later on, i.e. builder. The project path refers
to the local copy of the source repository, i.e. "/home/user/Desktop/openengsb-tutorial”. Finaly, the
maven command is the command line option handed to Apache Maven, i.e. "clean build". Whenever
the connector is ordered to build the project it will now execute "mvn clean compile" in the project
directory of openengsb-tutorial. Click save to create the connector instance.

Services:

=] Select Instance

J AuditingDomain

] Example Domain

] TestDomain

1 DeployDomain

‘= BuildDomain
L) domain.build (org.openengsb.domain.build.BuildDom:
_] builder (org.openengsb.domain.build.BuildDomain)

| Choose One v |
call

o Methodcall called successfully
o Result: d9ad1dfl-1036-4f9e-bbda-536ed02b3dda

R e

test build connector

Itistimefor some action. Scroll down all theway inthe Test Client tab, navigate to the BuildDomain
in the tree view and click the builder service. From the drop down menu below select build() and
click the "Call" button. When the project is built successfully a"Method called successfully" message

appears.

56

HowTo - Integrate services with OpenEngSB

alex@ubuntu: ~/Desktop/openengsb-tutorial/target/cla

File Edit View Search Terminal Help
alex@ubuntu:~/Desktop/openengsb-tutorial/target/classess$ \
> java org.openengsb.Main
Hello World!
alex@ubuntu:~/Desktop/openengsb-tutorial/target/classes$ [

hello world

Let us check the directory of openengsb-tutorial to find the newly created target directory. Using a
consolewe can havigate to the classes sub-folder and run "java org.openengsb.Main”. It returns"Hello
World!". Congratulations, you have just implemented the core functionality of our CI tool.

In case an error message is returned, we need to check the connector configuration. Please make sure
that Maven isableto build the project by manually executing "mvn clean build" in the project directory
of openengsb-tutorial. If this does not work out, most likely the setup of either Maven or JDK are
incorrect. If it works however, please check the configuration of the connector by navigating to the
builder service in the web interface again and clicking the "Edit Service" button.

24.7. Step 3 - Testing binaries

The next step in building the CI tool is implementation of automated testing. We can use the test
domain to achievethis. Conveniently, the Maven connector a so exports thistype of functionality and
we do not to load any additional features in the management console.

Creating new Maven Connector

Mawven connector for the build, test and deploy domain.

Service Id tester
Project path |/home/alex/Desktop/opener

Maven command test

& validate Service

Save

setup test connector instance

Use the Test client tab and create a new instance of the Maven connector for the "test” domain. It
works the same way as before. The Service ld isan arbitrary name, i.e. tester. The project path points
at the location of openengsb-tutorial’s base directory, i.e. "/home/user/Desktop/openengsb-tutorial”,
and the maven command indicates the command line arguments passed to Maven, i.e. "test". Click
save to create the connector instance.

57

HowTo - Integrate services with OpenEngSB

Services:
=1 Select Instance
] AuditingDomain
(] Example Domain
=3 TestDomain
] domain.test (org.openengsb.domain.test.TestDon
] tester (org.openengsb.domain.test.TestDomain)
(] DeployDomain
(] BuildDomain

| Choose One v |

| Call t

o Methodcall called successfully
o Result: 2c454b27-d9fd-4e80-be0d-dbab91330f8d

test test connector (yes, that's necessary)

We are also going to test the newly created connector. Use the tree view at the bottom of the page to
navigateto TestDomain and select the tester service. In the drop down box below chooserunT ests()
and click the "Call" button. If the "method called successfully" message is returned, the Maven
connector ran the rigorous unit tests on our sampl e application and they were passed with flying colors.

Home Test Client Send Event Page Context

User Management

| org.openengsb.core.common.Event v

name ~
send event page

In case you are wondering about the output of the test suite go to the Send Event page. There you
will find an audit list of all events processed by OpenEngSB and their corresponding payload, i.e. the
output of the test run. The list behaves like alog file with most recent events appended to the bottom.
In OpenENgSB any input from connectors is processed by domains and packaged in form of events.
Every time an event israised it can be matched by arule in a central rule-base and cause a reaction
of the system possibly invoking different domains or spawning additional events. By editing the rule-
base we become able to link different actions together. Depending on the outcome of an action, we
may receive different events, i.e. build success or build failure. By creating separate rules for each
case we can react accordingly and by chaining multiple actions and events we could create a longer
decision tree or process model.

58

HowTo - Integrate services with OpenEngSB

24.8. Step 4 - Notification Process

Inthefinal step we link the build and test stages together and add functionality to output results of the
process. For this purpose we will create a small number of rules that react to events generated by the
build and test stage. To keep things simple we do not add further connectors and assume that the build
processis started by calling the builder's "build()" method in the Test client web UI.

We are going to write the results of the build and test stage to the management console of OpenEngSB.
We will notify about the build starting and its outcome. Also, in case the build works out successfully
we will automatically start the test process. Hence, we need rules matching "BuildStartEvent" and
"BuildSuccessEvent" that write output to the console and potentially activate the test connector.

Rule + | | org.openengsb.auditEvent ~ || new save cancel
=
Copyright 2010 OpenEngSB Division, Vienna University of Technology
(Removed for the tutorial)
=
when
e : Event()
then
auditing.audit(e.tpString());

rule base editor

The easiest way to edit the rule-base of our OpenEngSB instance is the editor area at the bottom of
the Send Event page. Y ou can find event types and names by checking the event log displayed on the
page and create rules manually in the editor below. The rules are written in plain text, based on Drools
(documentation) and Java standards. They are quickly understood, just take alook at the auditEvent
rule used to generate the event log displayed on top of the page. Y ou can display the rule by choosing
"Rule" in the left-most drop-down box and "org.openengsb.auditEvent” in the second one. The text
editor now showsthat thereis awhen section that acts asfilter for incoming events and thereisathen
section that describes the actions to be taken in case of a match.

Rule = | |buildStarted save cancel
when

Event(type == "BuildStartEvent")
then

System.out.println("build started");

build started rule

Let us start out and create our own rule. We will inform the user via console when a build process
starts. Click the new button next to the drop-down boxes, enter a name for the newly created rule,
i.e. "buildStarted”, and save it. After selecting the rule in the drop-down box the text editor actually
shows the same content as for the audit event. Do not be confused, it's the default template. Y ou can
start editing right away. Note: Writing output directly to the console without using alogger serviceis
considered bad practice. Y et, it's simple and sufficient for demonstration purposes.

59

http://www.jboss.org/drools/documentation

HowTo - Integrate services with OpenEngSB

when
Event (type == "Buil dStart Event")
t hen
Systemout.printIn("Build started");

Thisrule matches "BuildStartEvent" and prints aline to the console window. Click saveto preparethe
rulefor testing. Switch to the Test client tab, select the builder and call the "build()" method. If things
work out, you'll instantly see the "Build started” notification pop up in the management console.

It's time to push this further. Create another rule, i.e. "buildSuccessful" and edit it to look like this:

when
Event (t ype == "Bui |l dSuccessful Event")

t hen
System out. println("Build successful, running tests");
tester.runTests();

Note: as of OpenEngSB 1.1.2 there is a bug in the editor that prevents connector invocations
("connectorld.doSomething()") from working correctly.

File Edit View Search Terminal Tabs

alex@ubuntu: ~/Desktop/openengsb-1.1.... 3 | alex@ubu

karaf@root=
build started

build successful, running tests

console output

The rule also matches "BuildSuccessEvent" and prints a line to the console window. In addition,
however, it calls a method provided by the test connector. Remember the "runTests()" method you
caledinthetester service by using thetest client before? This has exactly the same effect but replaces
manual Ul interaction with an automated response. Click save and kick off another build using the
Test client again. There you go: "Build started” and "Build successful, running tests'.

Congratulations, you have created a basic Cl tool! The foundations have been extended to alow
for easy auditing and extensibility. Of course, at the moment it simply replicates the functionality of
existing Cl tools, but it can be easily extended using SCM access, reporting and notification tools and
work together with project management software and PIM applications. Take alook on the long list
of available domains and tool connectors.

If you want to do some more practice you can add more rules, i.e. for "TestSuccessEvent” or
"BuildFailureEvent”. You can find event types, names and properties by checking the event log
displayed on the Send Event page.

60

HowTo - Integrate services with OpenEngSB

24.9. Further Reading

There are a number of different HowTo's and tutorials in the online documentation. They describe
different scenarios for setup, connectors and domains and event processing. Also, the user manual
contains additional information about the topics discussed and numerous OpenEngSB sub projects,
i.e. OpenCIT and OpenTicket, can be used for reference.

61

#howto.setup
#howto.logging
#howto.contexteditor
http://opencit.openengsb.org
http://openticket.openengsb.org

Chapter 25. HowTo - Change EDB database back
end

25.1. Goal

This tutorial describes how to change the database which is used by the EDB to persist
OpenEngSBModels.

25.2. Time to Complete

Thetime needed to perform thistask depends heavily on which database you want to useinstead of the
standard H2 database and on your experience with the OpenEngSB. This chapter will list the different
possihilities from the shortest time period needed to the most complex one. If you are not familiar with
the OpenEngSB please read this manual from the start or check the homepage for further information.

25.3. Use JPA compatible database

If you want to replace the standard database with another JPA supported database (supported databases
listet here), the procedure of changing is rather smple. You have to change the properties for the
database connection of the "infrastructure/jpa’ bundle. This is done by changing the config file
"org.openengsh.infrastructure.jpa.cfg". This file is in the "assembly/src/main/filtered-resources/etc"
folder. The file has the following entries:

driver Cl assNane=[here shall be the name of your driver class nane,
exanpl e: org. h2.j dbcx. JdbcDat aSour ce]

url =[here shall be the url to the used database file, exanple: jdbc:h2: openengshb]

user nane=[here shall be the usernanme for authentication at the database]

passwor d=[here shall be the password for authentication at the database]

After changing of thisfile, you have to assure that the driver which shall be used by the data sourceis
loaded at runtime. For that you have to load the database driver before the connection to the database
is established. Your database bundle dependency should be added to the "parents/shared/pom.xml*"
file. A dependency entry for the h2 database looks like this (the h2.version is defined as property in
the samefile:

<dependency>
<gr oupl d>com h2dat abase</ gr oupl d>
<artifactld>h2</artifactld>
<versi on>1. 3. 163</ ver si on>

</ dependency>

After you added the dependency, you have to make sure the database is loaded before the database
connection is established. For that just replace following code line in the file "assembly/src/main/
filtered-resources/features.xml” with the new database driver bundle (as you can see you only have to
copy and paste the values of the dependency):

62

http://www.openengsb.org
http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/supported_databases.html

HowTo - Change EDB database back end

<bundl e>mvn: com h2dat abase/ h2/ 1. 3. 163</ bundl e>

After this steps, you are done and the EDB uses now the new database as persistence backend.

25.4. Use non JPA compatible database

If you want to replace the standard database with another non JPA supported database you will have
to change first the data source like described in the previous section. After that you have to write your
own bundle that provides the EngineeringDatabaseService. In this case you also have to reproduce al
SQL commandsand port it for the new database and repl ace the standard EngineeringDatabaseService.

25.5. Appendix: Use no OSGi compatible database

In this case you have to wrap the driver for the database. How to do that can be read in the devel oper

manual where wrapping is explained.

63

Chapter 26. HowTo - Test Remote Messaging using
Hermes JMS

26.1. Preparation
Those sections shows what have to be doneinitally.

26.1.1. Preparing the Server

Before starting the server you have to edit the file OPENENGSB_HOM E/etc/system.properties Y ou
will find the lines:

Uncoment to disable encryption for jns-nessages
#or g. openengsb. j ms. noencr ypt =t rue

Uncoment to disable signature and tinestanp verification for all renote requests
#or g. openengsb. security. noverify=true

Uncomment (or if not existing add) the lines

or g. openengsb. j ns. noencrypt =true
or g. openengsb. security. noverify=true

Thiswill enable you to send unencrypted messages to the server.

Now start the server and enter the following line:

features:install openengsbh-ports-jns

Thiswill open the IMS port of the OpenEngSb server, which is used to receive Json messages.

[Resolved [1L activemg—hlueprint ¢5.5.1)

[Active [

fAipache ServiceMix :: Bundles :: jasypt <1.6.8.1>
[Active [Created 1>

activeng core (5.5.

@

[Active

[Active

[Active

[Active

[Active [Created
[Active [
[Active [Created
[Active [Created
[Active [Created

kahadb <5.5.1>

activeng—console ¢(6.5.1>

activeng—ra (5.5_1>

activeng—pool ¢(5.5.1>

activeng—karaf (5.5.1>

fipache ServiceMix 8pecs :: Scripting API 1.8 {1.5.68>
Apache XBean :: 0SGI Blueprint Mamespace Handler (3.7
OpenEng8B :: Infrastructure :: JHMS (3.8.8.SNAPSHOT>
OpenEngSB :: Ports :: JMS (3.8.0.SNAPSHOT>

Installation Check

M —————————

26.1.2. Setup Hermes

Download the latest Hermes version from www.hermesims.com

Download ActiveM Q from activemqg.apache.org

Unpack ActiveMQ

Install and Open Hermes (it is better to have the OpenEngSb server already running at this point)

Rightclick on the node “sessions’ in the tree, go to New->New Session:

64

HowTo - Test Remote Messaging using Hermes IMS

&7 Hermes.JMS -

\. hermesihermes-config. xml

File Messages

Actions Opkions Help

icEmp BB EasaeAfieredd X 4R EERE

Sessions

o

M

|ﬁ MNew session. .. |

@
T}
Add Session

 Inthe First Dropdown, enter "ActiveM Q"

£ Preferences

Session

Sessian:

ﬁ’ Mew Context,

'1Create new M3 session,

Use Consumer: [
Transacted:

Plug In

Default

Property

Yalue

Enter Name for Session

* Click onthe Tab “Providers’

Sessi-:un}\h Providers LGeneraI LRenderers J

| (]9

|| ancel || apply

Available Tabs

* Rightclick inthe center of the" Classpath Groups' panel. Select "Add Group" and enter "ActiveMQ".

e Click on the new Group “ActiveMQ” and rightclick “Libary”, select “Add Jars’. Go to
ActiveMQ_HOME/lib/ and select al contained jars. It should now look something like:

65

HowTo - Test Remote Messaging using Hermes IMS

Classpathizroups

Classpathiroups containing M3 praviders and dependent libraries.

=

lasspath Groups

AckiveMo

a

Library
F:\Programmelapache-activerng-5.5, 1ibYactivation-1.1.jar

F:\Programme)apache-activerng-5.5, 1YibYactivemng-camel-5.5. 1 . jar

F:\Programmelapache-activerng-5.5. 1Yiblactiverng-console-5.5.1. jar

F:\Programmelapache-activerng-5.5, 1iblactivemg-core-5.5. 1. jar

F:\Programme)apache-activerng-5.5, 1YibYactiverng-jaas-5.5.1.jar

F:\Programme)apache-activerng-5.5. 1\iblactiverng-protobuf-1.1 . jar

F:\Programme)apache-activerng-5.5, 1\liblactivemag-rar . kxk

F:\Programmelapache-activerng-5.5, 1Yibycamel-core-2, 7.0, jar

F:\Programme)apache-activerng-5.5. 11)ibcamel-jetty-2,. 7.0, jar

F:\Programme)apache-activerng-5.5, 11jiblcamel-ims-2,7.0.jar

F:\Programmelapache-activerng-5.5, 1Yibycamel-spring-2. 7.0, jar

F:\Programme)apache-activerng-5.5, 11/iblgeronimo-j2ee-management_1.1_spec-1.0.1.jar

F:\Programmelapache-activemg-5.5, 1ibygeronimo-jms_1.1_spec-1.1.1.jar

F:\Programmelapache-activerng-5.5. 11libygeronimo-jta_1.0,16_spec-1.0.1.jar

F:\Programme)apache-activerng-5.5., 11)ibljaxb-api-2. 1.jar

F:\Programme)apache-activerng-5.5. 1Yibljaxb-impl-2. 1.6, jar

F:1\Programmelapache-activerng-5. 5. 11ibijcl-over-slf4i-1.5, 11 . jar

F:\Programme)apache-activerng-5.5., 11)iblkahadb-5.5.1.jar

F:\Programme)apache-activerng-5.5, 11)iblslF4i-api-1.5. 11 jar

F:\Programmelapache-activerng-5.5, 1ibiskax-1.2.0.jar

F:\Programmelapache-activerng-5.5, 1Y ib\stax-api-1.0.1. jar

List of AMQ libraries

¢ IMPORTANT — An aert message is prompted, select “ Scan”

Please choose [5_<|
e Hermes will scan the AR For M3 connection Factories when you confirm this dialog.
-l You only need to do this if vou're nok using JMDT and it can kake some time if the library is very large,

If using BEA WebLogic select "Don't scan”

[Scan] [Don't scan l

Checkbox during import of Libraries

¢ Close the window with “Ok”.

¢ Open the "sessions’ folder in the tree and rightclick "ActiveMQ", select "edit":

66

HowTo - Test Remote Messaging using Hermes IMS

[—% ims
—f,ﬂ, SESSIONS
+|:| contexks
¥ stares F Edit...
L) Files e

Mew [

Edit a session

» Select "ActiveMQ" in the "Loader" Dropdown (if you don't see the entry "ActiveMQ", then you
probably did not select "Scan" in the Alertmessage above):

Connection Factary

Class: |hermes, INDIConneckionFactary Loader: | AckiveMd w

Property Yalue
Swskem

Select the previously configured loader.

 Select "org.apache.activemqg.ActiveM QConnectionFactory"” in the " Class" dropdown. Rightclick on
properties and select "Add Property". Select "brokerURL" as the property-name and enter "tcp://
localhost:6549" (thisis the standard jms port of the OpenEngSh server, enter a different port if you
have changed it in your distribution. The Entry should now look something like:

Conneckion Fackory

Class: | org.apache, activemng. ActivelMQConnectionFactory % | Loader; | Ackivem() W
Propertsy Value
braokerIRL ke [flacalhost 6549

The completely finished entry.
» Select “OK” to close and save.

» Rightclick on the node “ ActiveM Q" in the sessions folder and select New -> Add Queue:

67

HowTo - Test Remote Messaging using Hermes IMS

= jms

=|-(= sessions

_____ @ - | Mew 4

..... @ fid [F Edit... T Mew session...

..... *§ I3 i
. @ re | | ¥ Mew Context...
+ D cankexks = DLI|:||IEE|tE.'. v | Ef F'.Ijlj quele. .. |
+l:| :.Ilzures (gy Discover... @@ Add topic... @
''''' & Fles . Delete Stra+s | @5 add durable. ..

G’ Mew Message Store..,

Add aqueuein hermes.

Click on the “Name” entry and enter “receive’, press ENTER to save your input (Hermes IMSis

alittle buggy here). This the standard OpenEngSh-receive queue in this OpenEngSh-release. Y ou
must send all your Json messages to this queue.

Select “Ok” to close and save.

Now you have to open the queue on which the response of your message will come back. In this

OpenEngSh-rel ease, the response-queue has the same name asthe "callld" of your message. Repeat
the steps above and use the "callld" of your message instead of "receive".

26.2. Send and Receive

Messages

Now you are ready to send and receive Json Messages to the OpenEngSh-Server.

» Startup the OpenEngSh-Server before you Startup Hermes JMS (or else Hermes JMS might not

recognise the server).

» Expand the node "ActiveM Q" in the folder "sessions" and rightclick on the "receive" queue. Select

New -> New Message

----- () Fixc.eml
----- ® randomCallld

Mew

L

Edit...
Properties. ..

Duplicate. .,

Mew Message

2 Mewy session,,,

i |Create a New Message. ..
[¥ NewTomess,

Create anew Message in Hermes.

» Switch to the "Payload" tab and paste your message into the textfield.

68

HowTo - Test Remote Messaging using Hermes IMS

£7 Send message to receive

IM5 Header rUser Heal:leyw

{ A
"principal”:"yourusername", T
"credentials”;{

"classhame":"org. openengsb.connector . usernamepassword Password",
"data":{

"walue":"yourpassword”
3

)
inaryData":{

h
"message";{
"methodCall": §
"tlasses":["org. openengsh, core, api Event™],
"methodMame";"audit”,
"args":[{

"name";"abc"

I
"realClassImplementation:["org. openengsh. core, api. Event™],

Urogkaliabalt S bt

Configure a message for the OpenEngSB.

* Press"Send" to send your message, there is no further response or notification that the message was
sent. Press "Done" to close the window.

« Now Doubleclick on the queue with your "callld", you should see your responses:

@ ActiveMQ randomCallid x] 4B

IMsDestination MSType MSReplyTo JMSCorrelationID IMSExpiration IMsPriority
randomCalld [________dq
random¢Callld 0

{"message”: {"result": {"type”:"Void","className”:null,"arg”:null,"netabata’: { "contextId": "foo", "serviceld": "auditingtuenoryaudi tingtaudi ting-root”) }, "cal 1T
d":"randonCallld”},"timestanp”: 1324663235031}

Retrieve a message response.

« If you do not seearespone, then enter "display" in the console of your OpenEngSh server to view the
last logmessages. It islikely that you will see some Error-messages, concerning your Jsonmessage,
there.

Have fun testing with Json. :-)

69

Part Ill. Administration Console

This part gives an introduction to the OpenEngSB Console . It shows the functionality and gives an ideawhat the
admin can change in the system and how thisis done in the console.

The target audience of this part are users and in special admins of the system.

70

Chapter 27. OpenEngSB console commands

This section describes how to control OpenEngSB viathe Karaf-Console

27.1. Start the console

It is not much needed to get the OpenEngSB console started. Just type in a shell "mvn
openengsh:provision" or execute the corresponding shell script (etc/scripts/run.sh)

27.2. Available commands

This section is work in progress, which means that it will be extended every time a new command
isavailable

¢ openengsh:info - prints out the current project version

openengsh:domains - prints out all available domains

71

Part IV. Administration User Interface

This part gives an introduction to the OpenEngSB Administration user interface. It shows the functionality and
gives an idea what the admin can change in the system and how he can perform this changes.

The target audience of this part are users and in special admins of the system.

72

Chapter 28. Testclient

The admin interface for the user to manage domains, connectors(services) and things that have things
in common with this. Also you can test services here. If you select a service you can delete it with
the corresponding button.

28.1. Managing global variables

Global variables are needed to access domain-services and other helper-objects. To manage this
variables there is a button in the testclient which brings you to a own site where you can manage
this variables. Here you can add, edit and delete them. If some error occur while managing the
variables(deleting a variable that isalready in arule, ...), the site tells you what did go wrong.

28.2. Managing imports

Importsareimportant so that global variables can work. If the class of the global variableisn't imported
an error occurs because the necessary classes can't be loaded. To manage thisimportsthereisabutton
in the testclient which brings you to a own site where you can manage this imports. Here you can
add, edit and delete them. If some error occur while managing the imports, the site tells you what did
go wrong.

73

Chapter 29. Wiring

This user interface constitutes away for administratorsto do wiring. Wiring is a process, where global
variables get connected with connectors (domain endpoints) in a certain context. As there are severa
steps to do that, this page gives you afast and easy managing possibility. For further reading, please
visit http://www.openengsb.org/nightly/docbook/devel oper.context.html.

29.1. Wire a global variable with a service

1. Select a domain-type in the drop-down-field. Doing that, all domain endpoints and all globals of
this domain-type will be loaded. If nothing appears, then there will be probably no suitable global
available and no suitable connector is instantiated. This can be checked on the Testclient page.

-pen g -
EmmCD

I:IIH 2D

Home Test Client Send Event Page Services Task-Overview User Management

Workflow Editor Wiring

- - - - Current Project: foo - Logout
org.openengsb.domain.auditng.AuditngDomain =~ =

=3 Globals
) auditing
=i Domain endpoints
1 auditing+memoryauditing+auditing-root

Selecting a domain in the drop-down-field lets global s and endpoints appear

2. You have to choose a global, because that is the object you want to get wired with a connector. A
global variableis part of arule allowing the workflow service to communicate with connectors and
other objects. More information you can find in the Chapter about Workflows.

There are two possibilities to specify a global. Either you select one from the list or you write
autonomous a name of a global in the corresponding text field. If the global doesn't exist, there
will be a new one created with the type of the selected domain. If a global aready exists and have
another type as selected, then there will be an error message after submitting.

Input field for the global variable

3. You must select a domain endpoint from the corresponding list. The list will be loaded after you
have selected a domain.

Input field for the service Id, which can be edited by selecting an endpoint from the list

4. Y ou must select the contexts, where the wiring shall happen. Y ou can select all but at |east one have
to be selected. Information about what a context means can be found at the Context M anagement.

List of all available contexts

74

http://www.openengsb.org/nightly/docbook/developer.context.html
http://www.openengsb.org/nightly/docbook/ui.testclient.html
http://www.openengsb.org/docbook/user.workflows.html
http://www.openengsb.org/docbook/user.context.html

Wiring

5. After submitting the form, a success message for each context should appear. If an error occurs,
an error message will be shown.

wire

o Mo update was done at context foo2, because auditing already wired in that context.
o Wiring was successfully done for auditing at context foo.

Screenshot of the wiring results

29.2. What wiring does in the background

The properties of the servicewill be updated. First, it will try to get the property with the key 'location.’
+ context from these properties, because there are all locations stored. If there is no such property, a
new one will be added. After that, it will insert a new location in that property, which is the name of
the given global. Asthere can be morelocations, the new one will be appended excepted such location
already exists. Then nothing will be changed, but an info message will appear.

75

Part V. OpenEngSB
Contributor Detall Informations

This part gives an introduction to more detailed concepts of the OpenEngSB which should be interesting for
contributors which should have a deeper view on specialised topics of this project. This part is also interesting
for users which want to have a deeper insight what is happening in the background of the OpenEngSB magic.

76

Chapter 30. Prepare and use Non-OSGi Artifacts

Basicaly, wrapped JARs do not differ in any way from basic jars, besides that they are deployablein
OSGi environments. They are used as regular jar filesin the OpenEngSB. Nevertheless, the wrapping
itself is not as painless. This chapter triesto explain the process in detail.

30.1. Create Wrapped Artifacts

This chapter is a step by step guide on how to create a wrapped JAR.

1. In case that no OSGi compatible library is available in the public repositories a package has to
be created. Because of the simplicity of the process it should be done by hand. First of all create
a folder with the name of the project you like to wrap within openengsb/wrapped. Typically the
groupld of the bundle to wrap is sufficient. For example, for a project wrapping all Wicket bundles
the folder org.apache.wicket is created.

2. As anext step add the newly created folder as a module to the openengsb/wrapped/pom.xml file
in the modul e section. For the formerly created Wicket project org.apache.wicket should be added
to the modul e section.

3. Now create apom.xml file in the newly created project folder.

4. Thepom.xml containsthe basic project information. As parent for the project the wrapped/pom.xml
should be used. Basically for every wrapped jar the project has the following structure:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l--

OPENENGSB LI CENSE

-->

<proj ect >

<par ent >
<gr oupl d>or g. openengsh. wr apped</ gr oupl d>
<artifactld>openengsh- w apped- parent</artifactld>
<ver si on>6</ ver si on>

</ par ent >

<properties>
<bundl e. synbol i cName>w apped_j ar _group_i d</ bundl e. synbol i cNanme>
<wr apped. gr oupl d>wr apped_j ar _gr oup_i d</ wr apped. gr oupl d>
<wr apped. artifactld>w apped_j ar_artifact_id</w apped. artifactld>
<wr apped. ver si on>wr apped_j ar _ver si on</ wr apped. ver si on>
<bundl| e. nanmespace>${ wr apped. gr oupl d} </ bundl e. nanespace>

</ properties>

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>${ wr apped. gr oupl d} </ gr oupl d>
<artifactld>org. openengsb. ${ w apped. groupl d}</artifact!d>
<ver si on>${ wr apped. ver si on} </ ver si on>

<nanme>${ bundl e. synbol i cNane} </ nane>
<packagi ng>bundl e</ packagi ng>
<dependenci es>

<al | _j ars_whi ch_shoul d_be_enbedded />
</ dependenci es>

77

Prepare and use Non-OSGi Artifacts

</ proj ect >

5. Now add the OSGi specific statements for the maven-bundle-plugin. While the default export
and import are already handled in the root pom project specific settings have to be configured
here. For example al packages within the bundle-namespace are always exported. Thisis for most
scenarios sufficient. In addition all dependenciesfound are automatically imported asrequired. This
isgenerally not desired. Instead the parts of the library which have to be imported should be defined
separately. The following listing gives a short example how this OSGi specific part can look like.
For afull list of possible commands see the maven-bundle-plugin documentation.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. f el i x</ gr oupl d>
<artifact|d>maven-bundl e- pl ugi n</artifactld>
<ext ensi ons>t r ue</ ext ensi ons>
<confi guration>
<instructions>
<l nport - Package>sun. m sc; resol uti on: =opti onal
j avax.servlet;version="[2.5.0, 3.0.0)",
*:resol ution: =optiona
</ | nport - Package>
</instructions>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

30.2. Tips and Tricks

Although the description above sounds quite simple (and wrapping bundles is simple mostly) still
some nasty problems can occur. This section summarizes good tips and ideas how to wrap bundles
within the OpenEngSB.

» The best workflow to wrap a bundle is according to our experiences, to execute the previously
described stepsand simply start the OpenEngSB. Either it worksor createsahuge stack of exceptions
with missing import statements. Simply try to fulfill one problem, than start again till all references
are resolved.

» Embedding artifacts is nothing bad. Although it is recommended to use all references artifacts of a
bundle directly as OSGi components it can be such a pain sometimes. Some references are simply
not required by any other bundle or are too hard to port. In such cases feel free to directly embed
the dependencies in the wrapped jar.

78

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

Chapter 31. OpenEngSBModels

The OpenEngSBModels are the base concept for the whole semantic part of the OpenEngSB. They
are needed to enable the persisting of domain models into the EDB. Also they give the OpenEngSB
the possibility to send models via remote and to hide complexity from the user.

31.1. Motivation

The idea behind the concept of the OpenEngSBMaodels or domain modelsis corelated to the domain/
connector structure of the OpenEngSB. Models should represent the objects used by a domain in
an abstract manner (e.g. the model "Issue" in the issue domain). Since such models are defined on
the domain level. All connectors, which belong to a specific domain, use the models defined by this
domain. In that way every connector of a specific domain "speaks the same language”.

31.2. Structure of a model

What is alittle bit different from the normal approach to develop and design such domain modelsiis,
that in the OpenEngSB all domain models are interfaces. This interfaces have to extend the interface
"OpenEngSBModel" which is defined in the "core/api” bundle. Which advantage this brings will be
explained later on in this chapter.

Another important thing is the structure of such a model interface. Every domain model or
OpenEngSBModel interface contains only getter and setter pairs. It isimportant that every getter has
a equivalent setter and the other way round to ensure correct behaviour of this models.

But how to work only with interfaces? Since an OpenEngSBModel is only an interface, we need a
mechanism to work in an efficient way with such objects. The way we choose was to create a static
model proxy class, which simulates the implementation of a model. The class enabling this, is the
Model Utils class which can be found in the "core/common” bundle.

Every OpenEngSBModel object has three defined functions. getOpenEngSBM odelEntries,
addOpenEngSBM odel Entry and deletOpenEngSBM odel Entry. Whenever
getOpenEngSBModelEntries is called, the model transform itself into a list of key/value pairs,
where every entry have in addition the type of the value saved. This mechanism is used for
easier saving of models to the EDB and also to transfer a model to a different machine. With the
addOpenEngSBModel Entry you can add additional entries which are not part of the model definition
itself to the model. And finally with the removeOpenEngSBM odel Entry you can manually remove an
entry which has been inserted manually through addOpenEngSBModel Entry .

31.3. Supported field types

Currently the models are able to work with primitive types, strings, dates, lists, maps, modelsand files.
All those objects can be set and got through the interface and can also be persisted in the EDB (see
the chapter about the EDB for more details).

Special casein the supported field types are file objects. They are quitetricky, especialy if the models
shall be transfered to another machine. The behaviour of the models are: Whenever a model have to
transform itself to alist of OpenEngSBModel Entry, the model is aware of file objects. If it finds afile

79

OpenEngSBModels

object, it creates aFileWrapper object out of it. A FileWrapper object contains the name of thefileand
abyte array which holds the zip compressed content of the file object.

If such aFileWrapper would be accessed by agetter of afile object, the M odel Utilsdoesthe conversion
work of the FileWrapper to the file object for you. So this feature is completely transparent for the
normal user. Note that the conversion of afile object to a FileWrapper and the other way round has
only to be done if getOpenEngSBModelEntriesis called. For now thisis only the case at two points:
when amodel has to be saved into the EDB or when amodel is sent via remote.

31.4. Model Ids

For easier maintaining and faster finding of models (and also to enable the versioning possihility), the
user is able to define afield to be theid of amodel. An important point to consider hereisthat thisid
has to be unique for a connector of a domain (thisis because the id will be enlarged with the domain
id and the connector id).

To define afield to be the id of the model you simply have to add an annotation to the corresponding
setter. The annotation is called OpenEngSBModelld. If no id is defined for a model and this model
has to be inserted into the EDB, the EDB just take an arbitrary id to save the model.

80

Chapter 32. Engineering Database - EDB

The EDB is a core component of the semantic part of the OpenEngSB. It's purpose is the persisting
and versioning of domain models (so called OpenEngSBModel objects).

32.1. Motivation

The EDB concept was introduced with the ideato build acentral persisting unit for the domain models
of all domains. This central approach offers some interesting advantages, like for example:

 easy to change

 easy data maintainence

* single point of versioning configuration

« central instance where model transformations can take place

Model transformation is the out of the scope of the EDB and will be covered by the EKB.

Another important feature of the EDB are build-in conflict checkers. Until now, there is only one
implementation which is based on version numbers. Whenever someone tries to save something into
the EDB with the wrong version, the conflict checker tells the user that a conflict has been found and
that he has to checkout the newest version of the model before he can save the model.

32.2. Structure

The EDB is a JPA based implementation of a central database supplier in service orientated
architectures, which also have the additional functionality to version data. Currently we are using
OpenJPA as JPA implementation.

Since the EDB simulates the functionality of a scm system, the structures of the tablesin the EDB are
no big surprise. They consist of objects which have alist of key/value pairs bound to them. Also there
exist acommit table, with which the EDB is able to keep track of all meta-data of changes.

32.3. Usage

An important point to consider is, that the EDB isn't supposed to be used directly. Instead, the EKB
(Engineering KnowledgeBase) component provides two interfaces which shall be used to access
the EDB indirectly. The reason for that is, that the EKB handles the OpenEngSBModels, their
transformations and everything related to them. The EDB on the other hand is only the persistence
used by the EKB in the background.

The saving of models to the EDB directly is conceptionally possible, but should always be done
through the Persistencelnterface provided by the EKB bundle, since this service does the automatic
transformation work of elements from OpenEngSBModel to EDB savable objects. See the detailed
explanation of the EKB for moreinformations. WARNING: There was another possibility, withwhich
you could throw EDB* Events from connectors. This possibility is no deprecated and should not be
used any more.

81

Engineering Database - EDB

The loading of models from the EDB is conceptionally possible, but should always be done through
the Querylinterface of the EKB bundle, since this service does the automatic transformation work of
elements from the EDB to an OpenEngSBModel. See the detailed explanation of the EKB for more
informations.

32.4. Conflict Detection

The conflict detection, asit isimplemented now, isavery simpleimplementation of aconflict checker.
The checker is based on simple version numbers. If the version number of the model which hasto be
saved doesn't fit to the actual version number, the conflict detection throws an error.

In the future there should be more possibilities for conflict detections been found. But for the start,
this conflict detection is enough(Jira-1 SSUE).

82

http://issues.openengsb.org/jira/browse/OPENENGSB-2432

Chapter 33. Engineering Knowledge Base - EKB

The EKB, asitisnow, is at the very beginning of its development, so there is not much to write here
for now. The most important thing which is provided by the EKB at the moment is the QueryService.

33.1. Motivation

The main idea for the introduction of the EKB is the idea to provide automatic transformations of
domain models between tools and the OpenEngSB. But soon it was clear that this will not the only
task the EKB should provide.

Some other things the EKB shall provide when it is finished will be the Querylnterface service which
represents the loading force of models from the EDB (this is aready implemented), the possibility to
provide better conflict checkers for the EDB and if possible automatic conflict solving.

33.2. Query Interface

This service has the task to load models from the EDB. Since models are no real objects but proxied
interfaces, this service has to create a new model instance. This new model instanceis initialised with
the datawhich isloaded from the EDB. After all loaded datais inserted, the user can start work with
this model. All transformations are done in this service. The user doesn't have to worry about that. In
fact, he won't even notice that all this steps were necessary.

The query service provide alist of possibilities how to load models from the EDB (e.g. based on the
model id or based on the key value pairs of the model).

33.3. Persist Interface

This service has the task to save models to the EDB. It transform models into an EDB readable
format, append informations and forwards the objectsto the EDB. The PersistInterface consist of three

methods, namely "commit", "forceCommit" and "check".

The "commit" function performs sanity checks on the models which shall be persisted. If they are
successfully passed, the models are forwarded to the EDB for persisting.

The "forceCommit" function forwards the models to the EDB without performing sanity checks.

The "check" function only performs the sanity checks and give back the result of the sanity checks.

83

Chapter 34. How To Create an Internal Connector

This chapter describes how to implement a connector for the OpenEngSB environment. A connector
is an adapter between an external tool and the OpenEngSB environment. Every connector belongsto
a domain which defines the common interface of all its connectors. This means that the connector is
responsible to trandate all callsto the common interface to the externally provided tool.

34.1. Prerequisites

In case it isn't known what a tool domain is and how it defines the interface for the tool connector
then Section 5.4, “OpenEngSB Tool Domains’ is a good starting point. If there's already a matching
domainfor thistool it isstrongly recommended to useit. If thetool requiresanew domain to be created
relevant information can be found in Chapter 35, How To Create an Internal Domain.

34.2. Creating a new connector project

To take burden off the developer of creating the initial boilerplate code and configuration, a Maven
archetypeisprovided for creating theinitial project structure. Furthermore we provide the openengsb-
maven- pl ugi n (see ???) (or the et ¢/ scri pt s/ gen- connect or . sh script, which wraps the invocation
of the maven plug-in) which simplifiesthe creation of aconnector project from the archetype. It should
be used for assisted creation of a new connector project.

34.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the genConnect or goa of the
openengsb-maven-plugin executes additional tasks, |.e. renaming of theresulting project. Furthermore,
it tries to make sure that the new project is consistent with the naming conventions of the OpenEngSB
project.

The following parameters have to be specified to execute the correct archetype:
 archetypeGroupld - the groupld of the OpenEngSB connector archetype.
 archetypeArtifactld - the artifact!d of the OpenEngSB connector archetype.

« archetypeVersion - the current version of the OpenEngSB connector archetype.

Thefollowing parameters have to be defined for the parent of the new connector. It isnot solely parent
of the connector itself, but parent of the implementation of the domain and all other connectors of
this domain too.

« parentArtifactld - the artifactld of the project parent.

The following parameters have to be defined for the domain of the new connector.
 groupld - the groupld of the domain.

» domainArtifactld - the artifactld of the domain.

The following parameters have to be defined for the connector.

84

How To Create an Internal Connector

e artifactld - the connector artifact id. Has to be "openengsb-domains-<yourDomain>-
<yourConnector>".

e verson - the package for the source code of the domain implementation. Has to be
"org.openengsh.domains.<yourDomain>".

¢ domaininterface - The name of the domain interface.
« parentPackage - The package in which the domain interface can be found.
» package - the package for the connector code. Usually <parentPackage>.<yourConnector> is used.

e name - the name of the implementation module. Has to be "OpenEngSB :.: Domains ::
<yourDomain> :: <yourConnector>"

Where <yourDomain> has to be replaced by your domain name and <yourConnector> has to be

replaced by the respective connector name.

Note that the archetype will use the artifactld to name the project, but the OpenEngSB convention is
to use the connector name. Therefore you will have to rename the resulting project (however if you
use the genConnect or Mojo, this renaming will be performed automatically). Do not forget to check
that the new connector is included in the modules section of the domain parent pom xml file.

34.2.2. Using nvn openengsb: genConnect or

Simply invoke nvn openengsb: genConnector from the connector directory (connector/)
(alternatively the et ¢/ scri pt s/ gen- connect or . sh script can be used which invokes the openengsb-
maven-plugin for you).

connector $ mvn openengsb:genConnector

The mojo tries to guess as much as possible from your previous input. Guessed values are displayed
in brackets. If the guessiswhat you want, simply acknowledge with Ret ur n. The following output has
been recorded by executing the script in the connect or/ directory:

Domain Name [domain]: notification <Enter>

Domain Interface [NotificationDomain]: <Enter>

Connector Name [myconnector]: twitter <Enter>

Version [1.0.0-SNAPSHOT]: <Enter>

Project Name [OpenEngSB :: Domains:: Notification :: Twitter]: <Enter>

Only the domain and connector name was set, everything else has been guessed correctly. After
these inputs are provided the Maven Archetype gets called and may ask you for further inputs. Y ou
can simply hit Ret ur n each time to acknowledge standard values. If it finishes successfully the new
connector project is created and you may start implementing.

34.3. Project Structure

The newly created connector project should have the exact same structure as the following listing:

85

How To Create an Internal Connector

-- src

| - nmain

| - java

| - org

| - openengsb

| - connect or

| - [nyconnect or]

| - internal

| | -- [MyConnector] Connector.java

| | -- [MyConnector] Connect or Provi der.java
| | -- [MyConnector]lnstanceFactory.java
| - resources

| - OSd -1 NF

| - bl ueprint

| - [nyconnect or] - [nydomai n] - cont ext . xni

| - 110n

| - bundl e. properties

| - bundl e_de. properties

| - bundle.info

-- pom xm

Thew Ser vi ceConnect or classimplementsthe interface of the domain and thusisthe communication
link between the OpenEngSB and the connected tool. To give the OpenEngSB (and in the long run
the end user) enough information on how to configure a connector, the MySer vi cel nst anceFact ory
class provides the OpenEngSB with meta information for configuring and functionality for creating
and updating a connector instances. The MySer vi ceConnect or Provi der class connects connector
instances with the underlying OSGi engine and OpenEngSB infrastructure. It exports instances as
OSGi services and adds necessary meta information to each instance. Since the basic functionality is
mostly similar for all service managers, the MySer vi ceConnect or Provi der class extends a common
base class Abst ract Connect or Provi der . In addition the Abst r act Connect or Provi der also persists
the configuration of each connector, so that the connector instances can be restored after a system
restart.

The blueprint setup in the resources folder contains the setup of the service manager. Additional bean
setup and dependency injection can be configured there.

The OpenEngSB has been designed with localization in mind. The Maven Archetype already
generates two bundl e*. proper ti es files, onefor English (bundle.properties) and one for the German
(bundle_de.properties) language. Each connector has to provide localization through the properties
filesfor service and attributes text values. Thisincludes localization for names, descriptions, attribute
validation, option valuesand more. For conveniencetheBundl eSt ri ngs classisprovided onall method
callswhere text is needed for user representation for a specific locale.

34.4. Integrating the Connector into the OpenEngSB
environment

The connector provided is responsible for the integration of the connector into the OpenEngSB
infrastructure. The correct definition of this serviceis critical.

86

Chapter 35. How To Create an Internal Domain

This chapter describes how to implement a domain for the OpenEngSB environment. A domain
provides a common interface and common events and thereby defines how to interact with connectors
for this domain. For a better description of what a domain exactly consists of, take a look at the
architecture guide Chapter 5, Architecture of the OpenEngSB.

35.1. Prerequisites

In caseit isn't known what adomain isand how it defines the interface and events for connectors, then
Section 5.4, “OpenEngSB Tool Domains’ is agood starting point.

35.2. Creating a new domain project

To get devel opers started creating anew domain aMaven archetypeis provided for creating theinitial
project structure. The openengsb- maven- pl ugi n (See ???) or theet ¢/ scri pt s/ gen- domai n. sh script
(which only wraps the invocation of the plug-in) smplifies the creation of a domain.

35.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the genDomain goal of the
openengsb-maven-plugin executes additional tasks, i.e. renaming of the resulting project. Furthermore
it triesto make sure that the new project is consistent with the naming conventions of the OpenEngSB
project.

The following parameters have to be specified to execute the correct archetype:
« archetypeGroupld - the groupld of the OpenEngSB domain archetype.

« archetypeArtifactld - the artifactld of the OpenEngSB domain archetype.

« archetypeVersion - the current version of the OpenEngSB domain archetype.

The following parameters have to be defined for the parent of the new domain. It is not solely parent
of the domain implementation, but parent of al connectors of this domain too.

 groupld - the groupld of the project parent. Has to be " org.openengsh.domains.<yourDomain>".

 artifactld - the artifactld of the project parent. Has to be "openengsb-domains-<yourDomain>-
parent”.

 version - the version of the domain parent, which is usually equal to the current archetype version.

¢ name - the name of the parent module. Has to be "OpenEngSB :: Domains :: <yourDomain> ::
Parent"

The following parameters have to be defined for the implementation of the new domain.

* implementationArtifactld - the implementation artifact id. Has to be "openengsb-domains-
<yourDomain>-implementation"”.

87

How To Create an Internal Domain

e package - the package for the source code of the domain implementation. Has to be
"org.openengsh.domains.<yourDomain>".

» implementationName - the name of the implementation module. Has to be "OpenEngSB ::
Domains :: <yourDomain> :: Implementation”

Where <yourDomain> hasto be replaced by your domain name which is usually written in lower case,

i.e.report for the report domain.

Note that the archetype will use the artifactl d to name the project, but the OpenEngSB conventionisto
use the domain name. Therefore you will have to rename the resulting project. Do not forget to check
that the new domain is included in the modul es section of the domains pom.

35.2.2. Using nvn openengsb: genDonai n

Simply invokem/n openengsb: genDomai n from the domains directory in your OpenEngSB repository
(alternatively the etc/ scri pt s/ gen-domai n. sh script can be used which invokes the openengsb-
maven-plugin for you).

domains $ mvn openengsh:genDomain

You'll be asked to fill in afew variables which are needed to create the initial project structure. Based
on your input, the mojo tries to guess further values. Guessed values are displayed in brackets. If the
guessiscorrect, simply acknowledgewith Ret ur n. Asexampl e, thefoll owing output has been recorded
while creating the Test domain:

Domain Name [mydomain]: test <Enter>
Version [1.0.0-SNAPSHOT]: <Enter>
Prefix for project names [OpenEngSB :: Domains:: Test]: <Enter>

Only the domain name has been filled in, while the rest has been correctly guessed. After giving the
inputs, the Maven archetype gets executed and may ask for further inputs. Y ou can simply hit Ret ur n,
asthevalueshave been aready correctly set. If the mojo finishes successfully two new Maven projects,
the domain parent and domain implementation project, have been created and setup with a sample
implementation for adomain.

35.2.3. Project structure

The newly created domain should have the exact same structure as the following listing:

openengsb
- domain
- [mydomai n]
- [MyDonai n] Domei n. j ava
- [MyDonei n] Donmei nEvent s. j ava
- [MyDonei n] Dorai nPr ovi der. j ava

88

How To Create an Internal Domain

- resources
- 0sd-INF

- bl ueprint
- [nydonmi n] - cont ext . xm

- 110n
- bundl e. properties
- bundl e_de. properties

- bundl e.info

- pom xm

The project contains stubs for the domain interface, the domain events interface and the domain
provider and a resources folder with the spring setup and property files for internationalization.

Although the generated domain doesin effect nothing, you can aready start the OpenEngSB for testing
withnmvn clean install openengsb: provisi on and the domain will be automatically be picked up
and started.

The blueprint setup in the resources folder aready contains the necessary setup for this domain to
work in the OpenEngSB environment. Furthermore the default implementation proxiesfor the domain
interface, which forwards all service calls to the default connector for the domain and the default
implementation of the domain event interface, which forwards all events to the workflow service of
the OpenEngSB are configured.

Each OpenEngSB bundle (core, domain, connector) has been designed with localization in mind. The
Maven Archetype already createstwo bundl e*. properti es files, one for English (bundle.properties)
and one for the German (bundle_de.properties) language. Each connector has to provide localization
through it own properties files. For domains, this only means localization for a name and description
of the domain itself.

35.3. Components

1. Domain interface - Thisistheinterface that connectors of that domain must implement. Operations
that connectors should provide, are specified here. Events that are raised by this Domain in
unexpected fashion (e.g. new commit in scm system) are specified on the Interface. The Raise
Annotation and the array of Event classes it takes as an argument are used. If the Raise annotation
is put on amethod the events that are specified through the annotation are raised in sequence upon
acall.

2. Domain event interface - Thisisthe interface the domain providesfor its connectors to send events
into OpenEngSB. The event interface contains ar ai seEvent (SomeEvent event) method for each
supported event type.

3. Domain Provider - The domain provider is a service that provides information about the domain
itself. It is used to determine which domains are currently registered in the environment. Thereis
an abstract class, that takes over most of the setup.

4. Blueprint context - There are three services, that must be registered with the OSGi service-
environment. First, there is the Domain Provider. Moreover, the domain must provide a kind
of connector itself since it must be able to handle service calls and redirect it to the default-
connector specified in the current context. And finally the domain provides an event interfacefor its
connectorswhich can be used by them to send eventsinto OpenEngSB. The default implementation

89

How To Create an Internal Domain

of this event interface simply forwards all events sent through the domain to the workflow service.
However, domains can aso provide their own implementation of their event interface and add data
to events or perform other tasks. There is a bean factory that creates a Java-Proxy that can be used
as ForwardService both for the forwarding of service calls from domain to connector and for the
forwarding of events to the workflow service. The service call to ForwardService looks up the
default-connector for the specified domain in the current context and forwards the method-call right
toit. The event forward service simply forwards all eventsto the workflow service of OpenEngSB.

35.4. Connectors

For information regarding the implementation of connectors for the newly created domain see
Chapter 34, How To Create an Internal Connector.

90

Chapter 36. HowTo - Extend OpenEngSB Console

36.1. Goal

This tutorial shows how to extend the OpenEngSB console.

36.2. Time to Complete

To read thistutorial and get add afirst command should not take more than 10 minutes

36.3. Prerequisites

This HowTo assumes you aready have downloaded the OpenEngSB.

36.4. Start the console

It is not much needed to get the OpenEngSB console started. Just type in a shell "mvn
openengsb:provision” or execute the corresponding shell script (etc/scripts/run.sh)

36.5. Adding new commands

This section describes how to add new commands. The project is located in core/console. To
add a new command not much is needed. For a finished example have a look at the class
org.openengsh.core.console.OpenEngSBInfo. Here a short description:

i nport org. apache. fel i x. gogo. coomands. Command;
i mport org. apache. kar af . shel | . consol e. Osgi ConmandSupport ;

@ommand(scope = "openengsb", nane = "info", description = "Prints out sone information")
public class OpenEngSBI nfo extends Osgi ConmandSupport {

@verride

protected Obj ect doExecute() throws Exception {
Systemout.printin("Here is the information");
return null;

Thereisjust one single other step which has to be done: Go into the core/consol e/src/main/resources/
OSGI-INF/bluepring/shell-config.xml and add the following lines:

<command- bundl e xm ns="htt p://kar af . apache. or g/ xm ns/shel | /v1. 0. 0" >
<command nane="openengsb/i nfo">
<action class="org. openengshb. core. consol e. OpenEngSBI nf 0"/ >
OpenEngSBI nf o
</ command- bundl| e>

91

HowTo - Extend OpenEngSB Console

This will lead to following command "openengsh:info". To execute this command, start the
OpenengSB console in a shell as described above and type in openengsh:info, this will print out the
text "Here is the information”

92

Chapter 37. HowTo - Create a connector for an
already existing domain for the OpenEngSB

37.1. Goal

This tutorial describes exemplary for all connectors the implementation of an email connector. The
email connector implementstheinterface of the ???, which isalready implemented in the OpenEngSB.
Therefore, this tutorial describes the implementation of a connector for an already present domain.

37.2. Time to Complete

If you are already familiar with the OpenEngSB about 30 minutes. If you are not familiar with the
OpenEngSB please read this manual from the start or check the homepage for further information.

37.3. Prerequisites

Warning: This section is likely to change in the near future, as domains and connectors are currently
separated from the rest of the OpenEngSB project. Currently connectors are devel oped together with
the core system.

For information about how to get started as contributor to the OpenEngSB project and how to get the
current OpenEngSB source please read the contributor section of the manual: Part V, “OpenEngSB
Contributor Detail Informations”.

37.4. Step 1 - Use the archetype

As the development of a connector is a recurring task the OpenEngSB developer team has prepared
Maven archetypes and useful mojos, which provide support for the initial creation of a connector. A
new connector can be created by invoking mvn openengsb:genConnector (or using/ et c/ scri pt s/

gen- connect or . sh)

Go into the directory "/connector” and invoke the mojo from there. It generates the result in the
directory fromwhereit isstarted, thereforeit isrecommended to run it from the"/connector” directory.
Y ou can also run it from a different directory and copy the results into the "/connector” directory. Fill
in the following values (if no input is provided the default value is kept):

Domai n Nanme (i s donmmi nnane): notification

Domain Interface (is NotificationDomain):

Connect or Name: enai l

Version (is 1.1.0- SNAPSHOT) :

Proj ect Name (is OpenEngSB :: Connector :: Email):

Now the maven archetype is executed. It asks you to confirm the configuration:

groupl d: org. openengsh. connect or
artifactld: org.openengsb. connector. email
version: 1.1.0- SNAPSHOT

package: org.openengsh. connector. emil
connect or Nane: Enai |

93

http://www.openengsb.org

HowTo - Create a connector for an already
existing domain for the OpenEngSB

connect or NaneLC:. emai |

domai nArtifactld: org.openengsb. domain. notification
domai nl nterface: Notificati onDomain

donmi nPackage: org. openengsh. domai n. notification
name: OpenEngSB :: Connector :: Email

Y: ©y

A project named "email” is created with the following structure:

engi

- src

| - main

| - java

| - org

| - openengsb

| - connector

| - email

| - internal

| | -- Enmil Connector.java

| | -- Email Connect or Provider.java
| | -- EmaillnstanceFactory.java
| - resources

| - OSA -1 NF

| - bl ueprint

| - email-notification-context.xn
| - 110n

| - bundl e. properties

| - bundl e_de. properties

| - bundle.info

- pom xmi

All these artifacts will be covered during the implementation of the connector and explained in step
2 of thistutorial.

37.5. Step 2 - Add the dependencies

Let's start with the dependencies. As the email connector will be based upon the javax mail libraries,
we need to include dependencies for the OSGi versions of these artifacts into the pom file located at
"/provision/pom.xml". So we add this dependency to the dependencies section:

<dependency>
<gr oupl d>or g. apache. servi cem x. bundl es</ gr oupl d>
<artifact!|d>org. apache. servi cem x. bundl es. javax. mai |l </artifactld>
<versi on>1. 4. 4</ ver si on>
</ dependency>

37.6. Step 3 - Configure the connector

To configure the connector as part of the OpenEngSB two more things are necessary. At first we
have to add the connector to the modules section of its parent pom if it is not already present there.
If you have run openengsh:genConnector in the "connector” directory this step should have aready
been performed automatically for you. To check or manually add the entry, open the file "/connector/
pom.xml" and add the new connector to the modules section:

94

HowTo - Create a connector for an already
existing domain for the OpenEngSB

<nodul es>
<nmodul e>enui | </ nodul e>

</ modul es>

The second step is necessary to configure Karaf correctly. Please open the file "/assembly/pom.xml”
and add the following line:

<profile>
<i d>r el ease</i d>

<depl oyURLs>
scan- bundl e: nvn: or g. openengsb. connect or/ or g. openengsb. connector.email/2.5.1

</ depl oyURLs>

37.7. Step 4 - Implement the connector

Now you can run the following command in the root folder of the OpenEngSB to create an eclipse
project for the new connector:

m/n openengsb: ecl i pse

Now import the connector project into Eclipse and implement the email service by implementing the
classes Email Servicelmpl.java and Email Servicel nstanceFactory.java. We won't go into detail about
the actual mail implementation here, so we encapsul ated the mailing functionality inamail abstraction.
Whilethe class Email Servicelmpl isresponsible for the realization of the domain interface, the factory
isresponsible for creating instances of the email service and for publishing the meta data necessary to
configure an instance of the email service. These two classes are now explained in detail.

package org. openengsb. connector. enuil .internal
i mport org. openengsb. connector.email.internal.abstraction. Mail Abstraction
i mport org. openengsb. connector.email.internal.abstracti on. Mail Properti es;

i nport org.openengsb. core. api . AliveState

i mport org. openengsb. domai n. noti fication. NotificationDomain
i mport org. openengsb. domai n. notification.nodel.Notification
i nport org.osgi.franmework. Servi ceRegi stration

public class Enmmil Servicelnpl inplenments NotificationDonmain {
private final String id;
private final Mil Abstraction mail Abstraction

private ServiceRegistration serviceRegistration
private final Mil Properties properties;

95

HowTo - Create a connector for an already
existing domain for the OpenEngSB

public Email Servicelnpl (String id, MilAbstracti on mail Abstraction) {
this.id = id;
this. mail Abstracti on = mail Abstraction;
properties = nmil Abstracti on.createMil Properties();

}

/**

* Performthe given notification, which defines nessage, recipient, subject and

* attachnents.

*/
@verride
public void notify(Notification notification) {

mai | Abstraction. send(properties, notification.getSubject(), notification
. get Message(), notification.getRecipient());

}

/**
* return the current state of the service,
*
* @ee org.openengsh. core.api.AliveState
*/
@verride
public AliveState getAliveState() {
AliveState aliveState = mail Abstraction.getAliveState();
if (aliveState == null) {
return AliveState. OFFLI NE;
}
return aliveState;

}

public String getld() {
return id;

}

public ServiceRegistration getServiceRegistration() {
return serviceRegi stration;

}

public void setServiceRegistration(ServiceRegistration serviceRegistration) {
this.serviceRegistration = servi ceRegistration;

}

public Mail Properties getProperties() {
return properties;

}

As you can see, without the mail specific stuff the implementation is quite straight forward. Simply
implement thedomain interface aswell asthe getAliveState() method, whichisused to query to current

status of atool.

package org. openengsh. connector.email .internal;

i mport java.util.HashMap;
i mport java.util.Map;

i mport org.openengsb. connector.email.internal.abstraction. Mail Abstraction;
i mport org. openengsb. core. api . Servi cel nst anceFact ory;

i nport org.openengsbh. core. api . descriptor.AttributeDefinition;

i mport org. openengsb. core. api . descri ptor. Servi ceDescri ptor;

96

HowTo - Create a connector for an already

existing domain for the OpenEngSB
i nport org.openengsb. core. api . validation. MiltipleAttributeValidationResult;
i mport org.openengsb. core. api.validation. MultipleAttributeValidationResultlnpl;
i nport org. openengsbh. donai n. noti fication.NotificationDonain;

public class Email Servicel nstanceFactory inplenments
Servi cel nst anceFact ory<Not i fi cati onDomai n, Emai | Servi cel npl > {

private final Mail Abstracti on mail Abstraction;

publ i ¢ Email Servi cel nstanceFact ory(Mi |l Abstracti on mail Abstraction) {
this.mail Abstraction = mai |l Abstracti on;

private void setAttributesOnNotifier(Map<String, String> attributes,
Enai | Servicel npl notifier) {

if (attributes.containsKey("user")) {
notifier.getProperties().setUser(attributes.get("user"));

if (attributes.containsKey("password")) {
notifier.getProperties().setPassword(attributes.get("password"));

if (attributes.containsKey("prefix")) {
notifier.getProperties().setPrefix(attributes.get("prefix"));

if (attributes.containsKey("sntpAuth")) {
notifier.getProperties().setSntpAut h(Bool ean. par seBool ean(attri butes.
get ("snt pAuth")));

if (attributes.containsKey("sntpSender")) {
notifier.getProperties().setSender(attributes.get("sntpSender"));

if (attributes.containsKey("sntpHost")) {
notifier.getProperties().setSntpHost(attributes.get("sntpHost"));

if (attributes.containsKey("sntpPort")) {
notifier.getProperties().setSntpPort(attributes.get("sntpPort"));

/**
* Call ed when the {@ink #ServiceDescriptor} for the provided service is needed.
*
* The {@ode builder} already has the id, service type and inplenmentation type
* set to defaults.
*/
@verride
public ServiceDescriptor getDescriptor(ServiceDescriptor.Builder builder) {
bui | der. nane("enmi |l . nane") . descri ption("email.description");

bui | der
.attribute(buil dAttribute(builder, "user", "usernane.output Mode",
"user name. out put Mbde. descri ption"))
.attri but e(

bui | der. newAttribute().id("password").nanme("password. out put Mode")
.description("password. out put Mode. descri ption"). defaul t Val ue("")
.required().asPassword().build())
.attribute(buil dAttribute(builder, "prefix", "prefix.outputMde",
"prefix.out put Mde. descri ption"))
.attribute(
bui | der.newAttribute().id("sntpAuth").name("mail.sntp.auth. out put Mode")
.description("mail.sntp.auth. out put Mde. descri ption")
.defaul t Val ue("fal se"). asBool ean(). build())
.attribute(
bui | dAttri bute(buil der, "sntpSender", "mail.sntp.sender. outputvbde",

HowTo - Create a connector for an already
existing domain for the OpenEngSB

"mai |l . snt p. sender . out put Mbde. descri ption"))

.attribute(
bui | dAttribute(builder, "sntpPort", "mail.sntp.port.outputMde",
"mai |l . sntp. port.output Mde. descri ption"))
.attribute(
bui | dAttribute(builder, "sntpHost", "mail.sntp.host. outputMode",

"mai |l . sntp. host. out put Mbde. description")). build();

return buil der. build();

private AttributeDefinition buildAttribute(ServiceDescriptor.Builder builder,
String id, String naneld, String descriptionld) {
return builder.newAttribute().id(id).name(naneld).description(descriptionld)
.defaul tValue("").required().build();

/**
* Called by the {@ink Abstract Servi ceManager} when updated service attributes for
* an instance are available. The attributes may only contain changed val ues and
* omt previously set attributes.
*
* @araminstance the instance to update
* @aram attributes the new service settings
*/
@verride
public void updateServicel nstance(Email Servi cel npl instance, Map<String,
String> attributes) {
set AttributesOnNotifier(attributes, instance);

[**

* The {@ink AbstractServi ceManager} calls this nmethod each tinme a new service
* instance has to be started.
*
* @aramid the unique id this service has been assigned.
* @aramattributes the initial service settings
*/
@verride
public Email Servicel npl createServicelnstance(String id,
Map<String, String> attributes) {
Emai | Servi cel npl notifier = new Email Servicel npl (id, mail Abstraction);
setAttributesOnNotifier(attributes, notifier);
return notifier;

/**

* Validates if the service is correct before updating.

*/
@verride
public MultipleAttributeValidationResult updateValidati on(Enail Servicel npl instance,

Map<String, String> attributes) {
return new Mil tipleAttributeValidationResultlnpl(true,
new HashMap<String, String>());

/**

* Validates if the attributes are correct before creation.

*/

@verride

public MultipleAttributeValidationResult createValidation(String id,

Map<String, String> attributes) {
return new MiultipleAttributeValidati onResultlnpl (true,
new HashMap<String, String>());

98

HowTo - Create a connector for an already
existing domain for the OpenEngSB

The factory is more interesting with respect to the OpenEngSB. It is used to create and configure
instances of the email service. Furthermore it is responsible for publishing which properties a
mail notifier needs to be configured in a proper way. The "getDescriptor" method returns a
service descriptor, which is created with the help of a builder. This service descriptor contains
the properties a mail notifier needs. In this case things like user password, smtp server and so
on. The "updateServicelnstance” method updates an already created instance of the mail service.
Basically this means setting the properties, which are provided in the attributes map parameter (see
"setAttributesOnNotifier" method). The " createServicel nstance” method isresponsiblefor the creation
of a new email service. The methods "updateValidation" and "createValidation" are used to check
properties before "updateServicelnstance" or "createServicelnstance” are caled. As the mail service
does not want to check properties beforehand it simply returns that all values are OK.

37.8. Step 5 - Blueprint Setup and Internationalization

The Maven archetype aready created the blueprint setup for the email service at src/main/resources/
OSGI-INF/blueprint. If properties or constructor arguments are needed for the service factory, they
have to be defined in the blueprint setup here. In our case the mail abstraction has to be injected as
constructor argument on the creation of the email service factory.

With regards to internationalization it is hecessary to add a name and a description for each property
used in the service descriptor (see email service factory). The properties files for English and German
are also already created by the Maven archetype and can be found at "src/main/resources/ OSGI-INF/
[10n/". In our case the bundle.properties file contains the following entries:

emai | . name=Emai | Notification
emai | . description=This is a Email Notification Service

user name. out put Mode = User nane
user nane. out put Mode. description = Specifies the usernane of the email account

passwor d. out put Mode = Password
passwor d. out put Mode. descri pti on = Password of the specified user

prefix. out put Mode = Prefix
prefi x. out put Mode. descri ption = Subject prefix for all mails sent by this connector

mai | . snt p. aut h. out put Mode = Aut hentification
mai | . snt p. aut h. out put Mbde. descri ption = Specifies if the sntp authentication is on or off

mai | . snt p. sender . out put Mode = Sender Enmil adress
mai | . snt p. sender . out put Mode. descri ption = Specifies the Enmil adress of the sender

mai | . snt p. port. out put Mode = SMIP Port
mai | . snt p. port . out put Mbde. descri ption = Specifies the Port for the sntp connection

mai | . snt p. host . out put Mode = SMIP Host
mai | . snt p. host . out put Mbde. descri ption = Specifies the SMIP Host nane

99

HowTo - Create a connector for an already
existing domain for the OpenEngSB

Asyou can see each property is defined with name and description. The same entries can be found in
the German properties file (bundle_de.properties) with German names and descriptions.

37.9. Step 6 - Start the OpenEngSB with your Connector

After implementing and testing your connector locally you can try to start up the OpenEngSB with
your new connector. Enter the following commands in the root directory of the OpenEngSB to build
and start the OpenEngSB in devel opment mode:

nmvn clean install
mvn openengsb: provi si on

Now you can enter "list" into the karaf console to check whether your new connector was installed
and started.

37.10. Step 7 - Test the new connector

Now you can use the OpenEngSB administration WebApp (available at http://localhost:8090/
openengsh) to test your new connector. For more information about how to use the WebApp see the
How-to section} of the OpenEngSB homepage.

100

http://localhost:8090/openengsb
http://localhost:8090/openengsb
http://openengsb.org/howto/howtoSimpleUsecase.html
http://openengsb.org/howto/howtoSimpleUsecase.html

Chapter 38. How to add new field support for
domain models

38.1. Goal

This tutorial explains how to create new supported field types for domain models. What a domain
model is, can be read in the user manual in the semantics section(Chapter 6, Semantics in the
OpenEngSB). In this section isalso explained which fields are supported until now. Thistask isdivided
in two subtasks, where the second oneis optional. Thefirst subtask provides the functionality that the
model isworking correctly with the new field type. The second subtask isthe possibility that thisfields
are also saved in the EDB and can be loaded from the EDB.

38.2. Time to complete

If you are already familiar with the OpenEngSB the first subtask will take about 45 minutes. The
second subtask will take about another 45 minutes. If you are not familiar with the OpenEngSB please
read this manual from the start or check the homepage for further information.

38.3. Prerequisites

For information about how to get started as contributor to the OpenEngSB project and how to get the
current OpenEngSB source please read the contributor section of the manual: Part V, “OpenEngSB
Contributor Detail Informations”.

38.4. Subtask 1 - Add model support

All that have to be done is to add a new converter step to the Model Proxy class in the core common
bundle. Step by step:

38.4.1. Create new converter step

A converter step is a class which extends the interface ModelEntryConverterStep. A
Model EntryConverterStep interface consists of 4 methods. This methods are 2 match functions, which
define if the given object can be converted by one of the converter methods, which are the other 2
functions. The interface looks like this:

public interface Mddel EntryConverterStep {

] **

* Checks if the given object is suitable for converting work when "get OQpenEngSBMbdcC

* called. (e.g. an OpenEngSBModel)
*/
bool ean mat chFor Get Model Entri es(Obj ect obj ect);

/**

* Does the converting work for the proxy when "get OpenEngSBMbdel Obj ect 8"

* OpenEngSBModel W apper)
*/
bj ect convert For Get Model Entri es(Qbj ect object);

/**

is callec

* Checks if the given object is suitable for converting work when a getter of the

101

http://www.openengsb.org

How to add new field support for domain models

* OpenEngSBModel W apper)

*/

bool ean mat chFor Getter (Obj ect object);

/**

* Does the converting work for the proxy when a getter is called. (e.g
* OpenEngSBModel)

*/

Ohj ect convert ForGetter(Object object);

The first two functions define the converting functionality if getOpenEngSBM odelObjects is called.
(e.g. we used thisto convert a File object to aFileWrapper object). The other two functions define the
converting functionality if a corresponding getter method is called. (e.g. convert FileWrapper object
to File object.

38.4.2. Add converter step

To add the new converter step, you have to add the converter step to the list of converter steps
in the method "initializeM odel ConverterSteps” in the ModelProxyHandler class. Important: The
DefaultConverterStep have to be the last step in the converter step list.

38.5. Subtask 2 - Add EDB support

To accomplish thistask, you have to extend the EDBConverter classin the EKB bundle. WARNING:
This step is currently under construction and very likely to be changed soon. As example for this
subtask, you can check how it was done with the File object.

In the EDBConverter, there are two functions which have to be extended. The first is needed for the
conversion of OpenEngSBModels to EDBODbjects and the other one is needed for the conversion of
EDBODbjects to OpenEngSBM odels.

38.5.1. OpenEngSBModels to EDBObjects

For this direction the method "convertSubModel" has to be extended. In the part where every
OpenEngSBModelEntry get analyzed, a new if statement has to be added, which does a specia
handling if the new introduced wrapper class is the parameter. How this wrapper class is saved, is
up to you.

38.5.2. EDBObjects to OpenEngSBModels

For this direction you have to extend the method " getV alueForProperty”. Again, here must also a new
if statement been added, where the parameter type is checked for the new field object which should
be supported. If this statement fits, you have to undo the conversion which have you done in the
"OpenEngSBMaodels to EDBObjects" part.

102

OpenEngSBN

	OpenEngSB Manual
	Table of Contents
	Part I. Introduction
	Chapter 1. How to read the Manual
	Chapter 2. What is the Open Engineering Service Bus
	Chapter 3. When to use the OpenEngSB
	3.1. The OpenEngSB as Base Environment
	3.2. Reusing integration Components and Workflows
	3.3. Management Environment
	3.4. Simple Development and Distribution Management
	3.5. Simple Plug-Ins and Extensions

	Part II. OpenEngSB Framework
	Chapter 4. Quickstart
	4.1. Writing new projects using the OpenEngSB
	4.2. Writing Domains for the OpenEngSB
	4.3. Writing Connectors for the OpenEngSB

	Chapter 5. Architecture of the OpenEngSB
	5.1. OpenEngSB Enterprise Service Bus (ESB)
	5.2. OpenEngSB Infrastructure
	5.3. OpenEngSB Components
	5.4. OpenEngSB Tool Domains
	5.5. Client Tools (Service Consumer)
	5.6. Domain Tools (Service Provider)
	5.7. Domain- and Client Tool Connectors

	Chapter 6. Semantics in the OpenEngSB
	6.1. Domain Models
	6.2. Load Domain Models
	6.3. Model Transformation

	Chapter 7. Context Management
	7.1. Wiring services

	Chapter 8. Persistence in the OpenEngSB
	8.1. Core Persistence
	8.2. Configuration Persistence
	8.2.1. Context configuration persistence

	Chapter 9. Security in the OpenEngSB
	9.1. Usermanagement
	9.2. Access control
	9.3. Authentication

	Chapter 10. Workflows
	10.1. Workflow service
	10.2. Rulemanager
	10.3. Processes

	Chapter 11. Taskbox
	11.1. Core Functionality
	11.2. UI Functionality

	Chapter 12. Remoting
	12.1. Filters
	12.2. Configure a filterchain
	12.3. Develop custom filters
	12.4. Develop an incoming port
	12.5. Develop an Outgoing port

	Chapter 13. External Domains and Connectors
	13.1. Proxying
	13.1.1. Proxying internal Connector calls

	Chapter 14. Deployer services
	14.1. Connector configuration
	14.1.1. Root services

	14.2. Context configuration

	Chapter 15. Client Projects and Embedding The OpenEngSB
	15.1. Using the same dependencies as the OPENENGSB

	Chapter 16. OpenEngSB Platform
	Chapter 17. HowTo - Setup OpenEngSB for development (First steps)
	17.1. Goal
	17.2. Time to Complete
	17.3. Prerequisites
	17.4. Java Development Kit 6
	17.5. Getting OpenEngSB
	17.6. Installing OpenEngSB
	17.7. Setup required domains
	17.8. First Steps
	17.9. Shutdown OpenEngSB

	Chapter 18. HowTo - First steps with the OpenEngSB (Send mails via the OpenEngSB)
	18.1. Goal
	18.2. Time to Complete
	18.3. Prerequisites
	18.4. Creating E-Mail Services
	18.5. Executing Service Actions Directly
	18.6. Executing Service Actions via Domains
	18.7. Next Steps

	Chapter 19. HowTo - Events with the OpenEngSB (Using the logging service)
	19.1. Goal
	19.2. Time to Complete
	19.3. Prerequisites
	19.4. Create required connectors
	19.5. Configure
	19.6. Creating a rule
	19.7. Throw Event
	19.8. Next Steps

	Chapter 20. HowTo - Create a Client-Project for the OpenEngSB
	20.1. Goal
	20.2. Time to Complete
	20.3. Step 1 - Needed tools
	20.3.1. Java Development Kit 6
	20.3.2. Maven 3

	20.4. Step 2 - Using the archetype
	20.5. Step 3 - The result
	20.6. Step 4 - Install features
	20.7. Step 5 - Start the Client-Project
	20.8. Step 6 - Shutdown

	Chapter 21. HowTo - Interact with the OPENENGSB Remotely
	21.1. Using JMS proxying
	21.1.1. Proxying internal Connector calls
	21.1.1.1. HowTo call an external service via proxies

	21.1.2. Calling internal Services
	21.1.3. Examples
	21.1.3.1. Connect With Python
	21.1.3.2. Connect With CSharp
	21.1.3.3. Connect With Perl

	21.1.4. Alternatives for JMS

	21.2. Using WS Proxing
	21.3. Internal Specialities

	Chapter 22. HowTo - Combine multiple connectors
	22.1. Composite strategies
	22.2. Create a composite connector

	Chapter 23. How to define a domain model
	23.1. Goal
	23.2. Time to complete
	23.3. Prerequisites
	23.4. Step 1 - Plan the structure of the model
	23.5. Step 2 - Write the model
	23.6. Step 3 - Add the model to a domain
	23.7. Step 4 - Use the model

	Chapter 24. HowTo - Integrate services with OpenEngSB
	24.1. Goal
	24.2. Time to Complete
	24.3. Prerequisites
	24.4. Setting up OpenEngSB
	24.5. Step 1 - Source repository
	24.6. Step 2 - Building the source code
	24.7. Step 3 - Testing binaries
	24.8. Step 4 - Notification Process
	24.9. Further Reading

	Chapter 25. HowTo - Change EDB database back end
	25.1. Goal
	25.2. Time to Complete
	25.3. Use JPA compatible database
	25.4. Use non JPA compatible database
	25.5. Appendix: Use no OSGi compatible database

	Chapter 26. HowTo - Test Remote Messaging using Hermes JMS
	26.1. Preparation
	26.1.1. Preparing the Server
	26.1.2. Setup Hermes

	26.2. Send and Receive Messages

	Part III. Administration Console
	Chapter 27. OpenEngSB console commands
	27.1. Start the console
	27.2. Available commands

	Part IV. Administration User Interface
	Chapter 28. Testclient
	28.1. Managing global variables
	28.2. Managing imports

	Chapter 29. Wiring
	29.1. Wire a global variable with a service
	29.2. What wiring does in the background

	Part V. OpenEngSB Contributor Detail Informations
	Chapter 30. Prepare and use Non-OSGi Artifacts
	30.1. Create Wrapped Artifacts
	30.2. Tips and Tricks

	Chapter 31. OpenEngSBModels
	31.1. Motivation
	31.2. Structure of a model
	31.3. Supported field types
	31.4. Model Ids

	Chapter 32. Engineering Database - EDB
	32.1. Motivation
	32.2. Structure
	32.3. Usage
	32.4. Conflict Detection

	Chapter 33. Engineering Knowledge Base - EKB
	33.1. Motivation
	33.2. Query Interface
	33.3. Persist Interface

	Chapter 34. How To Create an Internal Connector
	34.1. Prerequisites
	34.2. Creating a new connector project
	34.2.1. Using the Maven Archetype
	34.2.2. Using mvn openengsb:genConnector

	34.3. Project Structure
	34.4. Integrating the Connector into the OpenEngSB environment

	Chapter 35. How To Create an Internal Domain
	35.1. Prerequisites
	35.2. Creating a new domain project
	35.2.1. Using the Maven Archetype
	35.2.2. Using mvn openengsb:genDomain
	35.2.3. Project structure

	35.3. Components
	35.4. Connectors

	Chapter 36. HowTo - Extend OpenEngSB Console
	36.1. Goal
	36.2. Time to Complete
	36.3. Prerequisites
	36.4. Start the console
	36.5. Adding new commands

	Chapter 37. HowTo - Create a connector for an already existing domain for the OpenEngSB
	37.1. Goal
	37.2. Time to Complete
	37.3. Prerequisites
	37.4. Step 1 - Use the archetype
	37.5. Step 2 - Add the dependencies
	37.6. Step 3 - Configure the connector
	37.7. Step 4 - Implement the connector
	37.8. Step 5 - Blueprint Setup and Internationalization
	37.9. Step 6 - Start the OpenEngSB with your Connector
	37.10. Step 7 - Test the new connector

	Chapter 38. How to add new field support for domain models
	38.1. Goal
	38.2. Time to complete
	38.3. Prerequisites
	38.4. Subtask 1 - Add model support
	38.4.1. Create new converter step
	38.4.2. Add converter step

	38.5. Subtask 2 - Add EDB support
	38.5.1. OpenEngSBModels to EDBObjects
	38.5.2. EDBObjects to OpenEngSBModels

